1. |
Saraon P, Pathmanathan S, Snider J, et al. Receptor tyrosine kinases and cancer: oncogenic mechanisms and therapeutic approaches. Oncogene, 2021, 40(24): 4079-4093.
|
2. |
Huang XL, Khan MI, Wang J, et al. Role of receptor tyrosine kinases mediated signal transduction pathways in tumor growth and angiogenesis—New insight and futuristic vision. Int J Biol Macromol. 2021, 180: 739-752.
|
3. |
Jiang W, Ji M. Receptor tyrosine kinases in PI3K signaling: The therapeutic targets in cancer. Semin Cancer Biol, 2019, 59: 3-22.
|
4. |
Sudhesh Dev S, Zainal Abidin SA, Farghadani R, et al. Receptor tyrosine kinases and their signaling pathways as therapeutic targets of curcumin in cancer. Front Pharmacol, 2021, 12: 772510.
|
5. |
Yamaoka T, Kusumoto S, Ando K, et al. Receptor tyrosine kinase-targeted cancer therapy. Int J Mol Sci, 2018, 19(11): 3491.
|
6. |
Ebrahimi N, Fardi E, Ghaderi H, et al. Receptor tyrosine kinase inhibitors in cancer. Cell Mol Life Sci, 2023, 80(4): 104.
|
7. |
Liu L, Yu XZ, Li TS, et al. A novel protein tyrosine kinase NOK that shares homology with platelet- derived growth factor/fibroblast growth factor receptors induces tumorigenesis and metastasis in nude mice. Cancer Res, 2004, 64(10): 3491-3499.
|
8. |
Lai Y, Zhang Z, Li J, et al. STYK1/NOK correlates with ferroptosis in non-small cell lung carcinoma. Biochem Biophys Res Commun, 2019, 519(4): 659-666.
|
9. |
Kondoh T, Kobayashi D, Tsuji N, et al. Overexpression of serine threonine tyrosine kinase 1/novel oncogene with kinase domain mRNA in patients with acute leukemia. Exp Hematol, 2009, 37(7): 824-830.
|
10. |
Nirasawa S, Kobayashi D, Kondoh T, et al. Significance of serine threonine tyrosine kinase 1 as a drug resistance factor and therapeutic predictor in acute leukemia. Int J Oncol, 2014, 45(5): 1867-1874.
|
11. |
Zhou J, Wang F, Liu B, et al. Knockdown of serine threonine tyrosine kinase 1 (STYK1) inhibits the migration and tumorigenesis in glioma cells. Oncol Res, 2017, 25(6): 931-937.
|
12. |
Hu YP, Wu ZB, Jiang L, et al. STYK1 promotes cancer cell proliferation and malignant transformation by activating PI3K-AKT pathway in gallbladder carcinoma. Int J Biochem Cell Biol, 2018, 97: 16-27.
|
13. |
Chen MY, Zhang H, Jiang JX, et al. Depletion of STYK1 inhibits intrahepatic cholangiocarcinoma development both in vitro and in vivo. Tumour Biol, 2016, 37(10): 14173-14181.
|
14. |
Chen L, Ma C, Bian Y, et al. Aberrant expression of STYK1 and E-cadherin confer a poor prognosis for pancreatic cancer patients. Oncotarget, 2017, 8(67): 111333-111345.
|
15. |
Chen Y, Li YH, Chen XP, et al. Point mutation at single tyrosine residue of novel oncogene NOK abrogates tumorigenesis in nude mice. Cancer Res, 2005, 65(23): 10838-10846.
|
16. |
Robinson DR, Wu YM, Lin SF. The protein tyrosine kinase family of the human genome. Oncogene, 2000, 19(49): 5548-5557.
|
17. |
Li YH, Wang YY, Zhong S, et al. Transmembrane helix of novel oncogene with kinase-domain(NOK) influences its oligomerization and limits the activation of RAS/MAPK signaling. Mol Cells, 2009, 27(1): 39-45.
|
18. |
Ding X, Jiang QB, Li R, et al. NOK/STYK1 has a strong tendency towards forming aggregates and colocalises with epidermal growth factor receptor in endosomes. Biochem Biophys Res Commun, 2012, 421(3): 468-473.
|
19. |
Chung S, Tamura K, Furihata M, et al. Overexpression of the potential kinase serine/ threonine/tyrosine kinase 1 (STYK 1) in castration-resistant prostate cancer. Cancer Sci, 2009, 100(11): 2109-2114.
|
20. |
Yang Y, Liu L, Tucker HO. Induction of chronic lymphocytic leukemia-like disease in STYK1/NOK transgenic mice. Biochem Biophys Res Commun, 2022, 626: 51-57.
|
21. |
Li YH, Zhong S, Rong ZL, et al. The carboxyl terminal tyrosine 417 residue of NOK has an autoinhibitory effect on NOK-mediated signaling transductions. Biochem Biophys Res Commun, 2007, 356(2): 444-449.
|
22. |
Zhou C, Dong X, Wang M, et al. Phosphorylated STYK1 restrains the inhibitory role of EGFR in autophagy initiation and EGFR-TKIs sensitivity. Cell Insight, 2022, 1(4): 100045.
|
23. |
胡丹, 姜清波, 颜廷越, 等. 双亮氨酸模体对NOK/STYK1蛋白的表达及细胞内分布特征的影响. 中国细胞生物学学报, 2015, 37(10): 1386-1393.
|
24. |
Campbell KJ, Tait SWG. Targeting BCL-2 regulated apoptosis in cancer. Open Biol, 2018, 8(5): 180002.
|
25. |
刘威, 张艳, 朱剑军. STYK1激活Akt信号通路促进肺癌细胞增殖. 实用肿瘤杂志, 2020, 35(2): 134-139.
|
26. |
Ko CJ, Hsu TW, Wu SR, et al. Inhibition of TMPRSS2 by HAI-2 reduces prostate cancer cell invasion and metastasis. Oncogene, 2020, 39(37): 5950-5963.
|
27. |
Ma Z, Liu D, Li W, et al. STYK1 promotes tumor growth and metastasis by reducing SPINT2/HAI-2 expression in non-small cell lung cancer. Cell Death Dis. 2019, 10(6): 435. Doi: 10.1038/s41419-019-1659-1.
|
28. |
Wang Y, Liu S, Jiang G, et al. NOK associates with c-Src and promotes c-Src-induced STAT3 activation and cell proliferation. Cell Signal, 2020, 75: 109762.
|
29. |
刘斌, 刘力. NOK癌基因对人胚肾293T细胞周期G1/S期的影响及其作用机制. 基础医学与临床, 2014, 34(4): 470-474.
|
30. |
Sur S, Agrawal DK. Phosphatases and kinases regulating CDC25 activity in the cell cycle: clinical implications of CDC25 overexpression and potential treatment strategies. Mol Cell Biochem, 2016, 416(1-2): 33-46.
|
31. |
Zeng SL, Patel SS, Lv MQ, et al. STYK1/NOK affects cell cycle late mitosis and directly interacts with anaphase-promoting complex activator CDH1. Heliyon, 2022, 8(12): e12058.
|
32. |
Yamano H. APC/C: current understanding and future perspectives. F1000Res, 2019, 8: F1000 Faculty Rev-725. Doi:10.12688/f1000research.18582.1.
|
33. |
He J, Chao WC, Zhang Z, et al. Insights into degron recognition by APC/C coactivators from the structure of an Acm1-Cdh1 complex. Mol Cell, 2013, 50(5): 649-660.
|
34. |
Wang Z, Qu L, Deng B, et al. STYK1 promotes epithelial-mesenchymal transition and tumor metastasis in human hepatocellular carcinoma through MEK/ERK and PI3K/AKT signaling. Sci Rep, 2016, 6: 33205.
|
35. |
Li J, Wu F, Sheng F, et al. NOK/STYK1 interacts with GSK-3β and mediates Ser9 phosphorylation through activated Akt. FEBS Lett, 2012, 586(21): 3787-3792.
|
36. |
Huang Z, Ma N, Xiong YL, et al. Aberrantly high expression of NOK/STYK1 is tightly associated with the activation of the AKT/GSK3β/N-cadherin pathway in non-small cell lung cancer. Onco Targets Ther, 2019, 12: 10299-10309.
|
37. |
Lai Y, Lin F, Wang X, et al. STYK1/NOK promotes metastasis and epithelial-mesenchymal transition in non-small cell lung cancer by suppressing FoxO1 signaling. Front Cell Dev Biol, 2021, 9: 621147.
|
38. |
Liu Y, Li T, Hu D, et al. NOK/STYK1 promotes the genesis and remodeling of blood and lymphatic vessels during tumor progression. Biochem Biophys Res Commun, 2016, 478(1): 254-259.
|
39. |
Maeda O, Matsuoka A, Furukawa K, et al. Alterations in gene expression and DNA methylation profiles in gastric cancer cells obtained from scetic fluids collected before and after chemotherapy. Mol Clin Oncol, 2019, 11(1): 91-98.
|
40. |
Shi Y, Zhang J, Liu M, et al. SMAD3 inducing the transcription of STYK1 to promote the EMT process and improve the tolerance of ovarian carcinoma cells to paclitaxel. J Cell Biochem, 2019, 120(6): 10796-10811.
|
41. |
Eggermont C, Giron P, Noeparast M, et al. The EGFR-STYK1-FGF1 axis sustains functional drug tolerance to EGFR inhibitors in EGFR-mutant non-small cell lung cancer. Cell Death Dis, 2022, 13(7): 611.
|
42. |
Raoof S, Mulford IJ, Frisco-Cabanos H, et al. Targeting FGFR overcomes EMT-mediated resistance in EGFR mutant non-small cell lung cancer. Oncogene, 2019, 38(37): 6399-6413.
|
43. |
Chen H, Lu C, Lin C, et al. VPS34 suppression reverses osimertinib resistance via simultaneously inhibiting glycolysis and autophagy. Carcinogenesis, 2021, 42(6): 880-890.
|
44. |
Zhou C, Qian X, Hu M, et al. STYK1 promotes autophagy through enhancing the assembly of autophagy-specific class Ⅲ phosphatidylinositol 3-kinase complexⅠ. Autophagy, 2020, 16(10): 1786-1806.
|
45. |
Vaupel P, Schmidberger H, Mayer A. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol, 2019, 95(7): 912-919.
|
46. |
Shi WY, Yang X, Huang B, et al. NOK mediates glycolysis and nuclear PDC associated histone acetylation. Front Biosci (Landmark Ed), 2017, 22(10): 1792-1804.
|
47. |
Shi L, Tu BP. Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Curr Opin Cell Biol, 2015, 33: 125-131.
|
48. |
Shi W, Fu Y, Wang Y. Downregulation of GLUT3 impairs STYK1/NOK-mediated metabolic reprogramming and proliferation in NIH-3T3 cells. Oncol Lett, 2021, 22(1): 527.
|
49. |
Zhao Y, Yang L, He J, et al. STYK1 promotes Warburg effect through PI3K/AKT signaling and predicts a poor prognosis in nasopharyngeal carcinoma. Tumour Biol, 2017, 39(7): 1010428317711644. Doi:10.1177/1010428317711644.
|
50. |
Moriai R, Kobayashi D, Amachika T, et al. Diagnostic relevance of overexpressed NOK mRNA in breast cancer. Anticancer Res, 2006, 26(6C): 4969-4973.
|
51. |
Orang AV, Safaralizadeh R, Hosseinpour Feizi MA, et al. Diagnostic relevance of overexpressed serine threonine tyrosine kinase/novel oncogene with kinase domain (STYK1/ NOK) mRNA in colorectal cancer. Asian Pac J Cancer Prev, 2014, 15(16): 6685-6689.
|
52. |
Hu L, Chen HY, Cai J, et al. Serine threonine tyrosine kinase 1 is a potential prognostic marker in colorectal cancer. BMC Cancer, 2015, 15: 246.
|
53. |
Amachika T, Kobayashi D, Moriai R, et al. Diagnostic relevance of overexpressed mRNA of novel oncogene with kinase-domain (NOK) in lung cancers. Lung Cancer, 2007, 56(3): 337-340.
|
54. |
Li XL, Huang YY, Yuan TJ, et al. STYK1 promotes the malignant progression of laryngeal squamous cell carcinoma through targeting TGF-β1. Eur Rev Med Pharmacol Sci, 2020, 24(11): 6166-6174.
|
55. |
Cao Q, Chen M, Li Z, et al. High novel oncogene with kinase-domain (NOK) gene expression is associated with the progression of renal cell carcinoma. Clin Lab, 2016, 62(1-2): 179-186.
|
56. |
Fauteux-Daniel S, Faure F, Marotel M, et al. Styk1 expression is a hallmark of murine NK cells and other NK1. 1+ subsets but is dispensable for NK-cell development and effector functions. Eur J Immunol, 2019, 49(5): 677-685.
|
57. |
Wilharm A, Sandrock I, Marotel M, et al. Styk1 is specifically expressed in NK1. 1+ lymphocytes including NK, γδ T, and iNKT cells in mice, but is dispensable for their ontogeny and function. Eur J Immunol, 2019, 49(5): 686-693.
|
58. |
Jiang A, Zhang S, Wang X, et al. RBM15 condensates modulate mA modification of STYK1 to promote tumorigenesis. Comput Struct Biotechnol J, 2022, 20: 4825-4836.
|