1. |
王晓昊, 李虎, 张露, 等. CSCO《原发性肝癌诊疗指南(2022年版)》内科治疗部分研读. 中国普外基础与临床杂志, 2023, 30(4): 403-407.
|
2. |
Pizzagalli MD, Bensimon A, Superti-Furga G. A guide to plasma membrane solute carrier proteins. FEBS J, 2021, 288(9): 2784-2835.
|
3. |
Zhu B, Cheng D, Hou L, et al. SLC3A2 is upregulated in human osteosarcoma and promotes tumor growth through the PI3K/Akt signaling pathway. Oncol Rep, 2017, 37(5): 2575-2582.
|
4. |
Zhao M, Li M, Zheng Y, et al. Identification and analysis of a prognostic ferroptosis and iron-metabolism signature for esophageal squamous cell carcinoma. J Cancer, 2022, 13(5): 1611-1622.
|
5. |
Ichinoe M, Mikami T, Yanagisawa N, et al. Prognostic values of L-type amino acid transporter 1 and CD98hc expression in breast cancer. J Clin Pathol, 2021, 74(9): 589-595.
|
6. |
Lee D, Kim HS, Kim HU, et al. Expression profile of CD98 heavy chain and L-type amino acid transporter 1 and its prognostic significance in colorectal cancer. Pathol Res Pract, 2022, 229: 153730.
|
7. |
Hayashi N, Yamasaki A, Ueda S, et al. Oncogenic transformation of NIH/3T3 cells by the overexpression of L-type amino acid transporter 1, a promising anti-cancer target. Oncotarget, 2021, 12(13): 1256-1270.
|
8. |
Cano-Crespo S, Chillarón J, Junza A, et al. CD98hc (SLC3A2) sustains amino acid and nucleotide availability for cell cycle progression. Sci Rep, 2019, 9(1): 14065.
|
9. |
Console L, Scalise M, Salerno S, et al. N-glycosylation is crucial for trafficking and stability of SLC3A2 (CD98). Sci Rep, 2022, 12(1): 14570.
|
10. |
Kahlhofer J, Teis D. The human LAT1-4F2hc (SLC7A5-SLC3A2) transporter complex: physiological and pathophysiological implications. Basic Clin Pharmacol Toxicol, 2022 Dec 2. doi: 10.1111/bcpt.13821.
|
11. |
Häfliger P, Charles RP. The L-type amino acid transporter LAT1—an emerging target in cancer. Int J Mol Sci, 2019, 20(10): 2428.
|
12. |
Yan R, Li Y, Müller J, et al. Mechanism of substrate transport and inhibition of the human LAT1-4F2hc amino acid transporter. Cell Discov, 2021, 7(1): 16.
|
13. |
Nachef M, Ali AK, Almutairi SM, et al. Targeting SLC1A5 and SLC3A2/SLC7A5 as a potential strategy to strengthen anti-tumor immunity in the tumor microenvironment. Front Immunol, 2021, 12: 624324.
|
14. |
Digomann D, Linge A, Dubrovska A. SLC3A2/CD98hc, autophagy and tumor radioresistance: a link confirmed. Autophagy, 2019, 15(10): 1850-1851.
|
15. |
Seo E, Jee B, Chung JH, et al. Repression of SLC22A3 by the AR-V7/YAP1/TAZ axis in enzalutamide-resistant castration-resistant prostate cancer. FEBS J, 2023, 290(6): 1645-1662.
|
16. |
Hou J, Yan D, Liu Y, et al. The roles of integrin α5β1 in human cancer. Onco Targets Ther, 2020, 13: 13329-13344.
|
17. |
Poettler M, Unseld M, Braemswig K, et al. CD98hc (SLC3A2) drives integrin-dependent renal cancer cell behavior. Mol Cancer, 2013, 12: 169.
|
18. |
Wang H, Chen W, Jin M, et al. CircSLC3A2 functions as an oncogenic factor in hepatocellular carcinoma by sponging miR-490-3p and regulating PPM1F expression. Mol Cancer, 2018, 17(1): 165.
|
19. |
Singh N, Ecker GF. Insights into the structure, function, and ligand discovery of the large neutral amino acid transporter 1, LAT1. Int J Mol Sci, 2018, 19(5): 1278.
|
20. |
Wu F, Xiong G, Chen Z, et al. SLC3A2 inhibits ferroptosis in laryngeal carcinoma via mTOR pathway. Hereditas, 2022, 159(1): 6.
|
21. |
Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell, 2021, 12(8): 599-620.
|
22. |
Wang L, Liu Y, Du T, et al. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc. Cell Death Differ, 2020, 27(2): 662-675.
|
23. |
He J, Liu D, Liu M, et al. Characterizing the role of SLC3A2 in the molecular landscape and immune microenvironment across human tumors. Front Mol Biosci, 2022, 9: 961410.
|
24. |
Rochette L, Dogon G, Rigal E, et al. Lipid peroxidation and iron metabolism: two corner stones in the homeostasis control of ferroptosis. Int J Mol Sci, 2022, 24(1): 449.
|
25. |
Yin J, Meng X, Peng L, et al. Ferroptosis and cancer immunotherapy. Curr Mol Med, 2023, 23(5): 401-409.
|
26. |
王雅乐. 鼠肝癌治疗性单克隆抗体的靶标鉴定及SLC3A2作为肝癌潜在诊疗靶点的初步评估. 厦门: 厦门大学, 2019.
|
27. |
Pellizzari G, Martinez O, Crescioli S, et al. Immunotherapy using IgE or CAR T cells for cancers expressing the tumor antigen SLC3A2. J Immunother Cancer, 2021, 9(6): e002140.
|
28. |
Kong R, Wang N, Han W, et al. IFNγ-mediated repression of system Xc- drives vulnerability to induced ferroptosis in hepatocellular carcinoma cells. J Leukoc Biol, 2021, 110(2): 301-314.
|
29. |
Liang J, Sun Z. Overexpression of membranal SLC3A2 regulates the proliferation of oral squamous cancer cells and affects the prognosis of oral cancer patients. J Oral Pathol Med, 2021, 50(4): 371-377.
|
30. |
Alfarsi LH, El-Ansari R, Craze ML, et al. Co-expression effect of SLC7A5/SLC3A2 to predict response to endocrine therapy in oestrogen-receptor-positive breast cancer. Int J Mol Sci, 2020, 21(4): 1407.
|
31. |
Zhang L, Liu W, Liu F, et al. IMCA induces ferroptosis mediated by SLC7A11 through the AMPK/mTOR pathway in colorectal cancer. Oxid Med Cell Longev, 2020, 2020: 1675613.
|
32. |
Grzes KM, Sanin DE, Kabat AM, et al. Plasmacytoid dendritic cell activation is dependent on coordinated expression of distinct amino acid transporters. Immunity, 2021, 54(11): 2514-2530.
|
33. |
Ikeda K, Kinoshita M, Kayama H, et al. Slc3a2 mediates branched-chain amino-acid-dependent maintenance of regulatory T cells. Cell Rep, 2017, 21(7): 1824-1838.
|
34. |
Bothwell PJ, Kron CD, Wittke EF, et al. Targeted suppression and knockout of ASCT2 or LAT1 in epithelial and mesenchymal human liver cancer cells fail to inhibit growth. Int J Mol Sci, 2018, 19(7): 2093.
|
35. |
Zou J, Du K, Li S, et al. Glutamine metabolism regulators associated with cancer development and the tumor microenvironment: a pan-cancer multi-omics analysis. Genes (Basel), 2021, 12(9): 1305.
|
36. |
Zhang L, Huang Y, Ling J, et al. Overexpression of SLC7A11: a novel oncogene and an indicator of unfavorable prognosis for liver carcinoma. Future Oncol, 2018, 14(10): 927-936.
|
37. |
Bo T, Kobayashi S, Inanami O, et al. LAT1 inhibitor JPH203 sensitizes cancer cells to radiation by enhancing radiation-induced cellular senescence. Transl Oncol, 2021, 14(11): 101212.
|
38. |
Deng J, Chernikova SB, Wang Y, et al. A novel brain-permeant chemotherapeutic agent for the treatment of brain metastasis in triple-negative breast cancer. Mol Cancer Ther, 2021, 20(11): 2110-2116.
|
39. |
Kanai Y. Amino acid transporter LAT1 (SLC7A5) as a molecular target for cancer diagnosis and therapeutics. Pharmacol Ther, 2022, 230: 107964.
|
40. |
Kim DH, Kim WD, Kim SK, et al. TGF-β1-mediated repression of SLC7A11 drives vulnerability to GPX4 inhibition in hepatocellular carcinoma cells. Cell Death Dis, 2020, 11(5): 406.
|
41. |
Wang Q, Guo Y, Wang W, et al. RNA binding protein DAZAP1 promotes HCC progression and regulates ferroptosis by interacting with SLC7A11 mRNA. Exp Cell Res, 2021, 399(1): 112453.
|
42. |
Su Y, Zhao B, Zhou L, et al. Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett, 2020, 483: 127-136.
|
43. |
Li W, Dong X, He C, et al. LncRNA SNHG1 contributes to sorafenib resistance by activating the Akt pathway and is positively regulated by miR-21 in hepatocellular carcinoma cells. J Exp Clin Cancer Res, 2019, 38(1): 183.
|
44. |
Huang W, Chen K, Lu Y, et al. ABCC5 facilitates the acquired resistance of sorafenib through the inhibition of SLC7A11-induced ferroptosis in hepatocellular carcinoma. Neoplasia, 2021, 23(12): 1227-1239.
|
45. |
Gao R, Kalathur RKR, Coto-Llerena M, et al. YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO Mol Med, 2021, 13(12): e14351.
|
46. |
Li ZJ, Dai HQ, Huang XW, et al. Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma. Acta Pharmacol Sin, 2021, 42(2): 301-310.
|
47. |
Potla R, Hirano-Kobayashi M, Wu H, et al. Molecular mapping of transmembrane mechanotransduction through the β1 integrin-CD98hc-TRPV4 axis. J Cell Sci, 2020, 133(20): jcs248823.
|
48. |
Wu B, Zhou Y, Wang Y, et al. Dominant suppression of β1 integrin by ectopic CD98-ICD inhibits hepatocellular carcinoma progression. Int J Mol Sci, 2016, 17(11): 1882.
|