1. |
Wolfe BM, Kvach E, Eckel RH. Treatment of obesity: weight loss and bariatric surgery. Circ Res, 2016, 118(11): 1844-1855.
|
2. |
Aron-Wisnewsky J, Prifti E, Belda E, et al. Major microbiota dysbiosis in severe obesity: fate after bariatric surgery. Gut, 2019, 68(1): 70-82.
|
3. |
Moszak M, Szulińska M, Bogdański P. You are what you eat—The relationship between diet, microbiota, and metabolic disorders—A review. Nutrients, 2020, 12(4): 1096.
|
4. |
Jandhyala SM, Talukdar R, Subramanyam C, et al. Role of the normal gut microbiota. World J Gastroenterol, 2015, 21(29): 8787-8803.
|
5. |
Li JV, Ashrafian H, Bueter M, et al. Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk. Gut, 2011, 60(9): 1214-1223.
|
6. |
Salazar N, Ponce-Alonso M, Garriga M, et al. Fecal metabolome and bacterial composition in severe obesity: impact of diet and bariatric surgery. Gut Microbes, 2022, 14(1): 2106102.
|
7. |
Farin W, Oñate FP, Plassais J, et al. Impact of laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy on gut microbiota: a metagenomic comparative analysis. Surg Obes Relat Dis, 2020, 16(7): 852-862.
|
8. |
Chen G, Zhuang J, Cui Q, et al. Two bariatric surgical procedures differentially alter the intestinal microbiota in obesity patients. Obes Surg, 2020, 30(6): 2345-2361.
|
9. |
Palmisano S, Campisciano G, Silvestri M, et al. Changes in gut microbiota composition after bariatric surgery: a new balance to decode. J Gastrointest Surg, 2020, 24(8): 1736-1746.
|
10. |
Stefura T, Zapała B, Gosiewski T, et al. Changes in the composition of oral and intestinal microbiota after sleeve gastrectomy and Roux-en-Y gastric bypass and their impact on outcomes of bariatric surgery. Obes Surg, 2022, 32(5): 1439-1450.
|
11. |
Kim Y, Son D, Kim BK, et al. Association between the Blautia/Bacteroides ratio and altered body mass index after bariatric surgery. Endocrinol Metab (Seoul), 2022, 37(3): 475-486.
|
12. |
Ikeda T, Aida M, Yoshida Y, et al. Alteration in faecal bile acids, gut microbial composition and diversity after laparoscopic sleeve gastrectomy. Br J Surg, 2020, 107(12): 1673-1685.
|
13. |
Lau E, Belda E, Picq P, et al. Gut microbiota changes after metabolic surgery in adult diabetic patients with mild obesity: a randomised controlled trial. Diabetol Metab Syndr, 2021, 13(1): 56. doi: 10.1186/s13098-021-00672-1.
|
14. |
Golzarand M, Toolabi K, Douraghi M, et al. Changes in the gut microbiota composition and their relation to dietary intake after bariatric surgery. Obes Surg, 2023, 33(9): 2866-2873.
|
15. |
Yadav J, Liang T, Qin T, et al. Gut microbiome modified by bariatric surgery improves insulin sensitivity and correlates with increased brown fat activity and energy expenditure. Cell Rep Med, 2023, 4(5): 101051.
|
16. |
杜靖, 刘丹丹, 刘秀, 等. 肠道菌群在减重手术后的变化及改善代谢的机制. 中国普外基础与临床杂志, 2023, 30(3): 279-284.
|
17. |
Tu J, Wang Y, Jin L, et al. Bile acids, gut microbiota and metabolic surgery. Front Endocrinol (Lausanne), 2022, 13: 929530.
|
18. |
Wei M, Huang F, Zhao L, et al. A dysregulated bile acid-gut microbiota axis contributes to obesity susceptibility. EBioMedicine, 2020, 55: 102766.
|
19. |
Boatman S, Kohn J, Jahansouz C. The influence of the microbiome on anastomotic leak. Clin Colon Rectal Surg, 2023, 36(2): 127-132.
|
20. |
Schardey J, von Ahnen T, Schardey E, et al. Antibiotic bowel decontamination in gastrointestinal surgery—A single-center 20 years’ experience. Front Surg, 2022, 9: 874223.
|
21. |
Shogan BD, Smith DP, Christley S, et al. Intestinal anastomotic injury alters spatially defined microbiome composition and function. Microbiome, 2014, 2: 35.
|
22. |
Shogan BD, Belogortseva N, Luong PM, et al. Collagen degradation and MMP9 activation by Enterococcus faecalis contribute to intestinal anastomotic leak. Sci Transl Med, 2015, 7(286): 286ra68.
|
23. |
Chang J, Guyton K. A pathologic microbiome impacts post-operative anastomotic healing. Surg Infect (Larchmt), 2023, 24(3): 238-244.
|
24. |
Caballero-Flores G, Pickard JM, Núñez G. Microbiota-mediated colonization resistance: mechanisms and regulation. Nat Rev Microbiol, 2023, 21(6): 347-360.
|
25. |
Li M, Wang B, Zhang M, et al. Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci USA, 2008, 105(6): 2117-2122.
|
26. |
Monte SV, Caruana JA, Ghanim H, et al. Reduction in endotoxemia, oxidative and inflammatory stress, and insulin resistance after Roux-en-Y gastric bypass surgery in patients with morbid obesity and type 2 diabetes mellitus. Surgery, 2012, 151(4): 587-593.
|
27. |
Rabiei N, Ahmadi Badi S, Ettehad Marvasti F, et al. Induction effects of Faecalibacterium prausnitzii and its extracellular vesicles on Toll-like receptor signaling pathway gene expression and cytokine level in human intestinal epithelial cells. Cytokine, 2019, 121: 154718.
|
28. |
Wang M, Li L, Chen Y, et al. Role of gut microbiome and microbial metabolites in alleviating insulin resistance after bariatric surgery. Obes Surg, 2021, 31(1): 327-336.
|
29. |
Shi Q, Wang Q, Zhong H, et al. Roux-en-Y gastric bypass improved insulin resistance via alteration of the human gut microbiome and alleviation of endotoxemia. Biomed Res Int, 2021, 2021: 5554991.
|
30. |
Furet JP, Kong LC, Tap J, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes, 2010, 59(12): 3049-3057.
|
31. |
Zheng Z, Hu Y, Tang J, et al. The implication of gut microbiota in recovery from gastrointestinal surgery. Front Cell Infect Microbiol, 2023, 13: 1110787.
|
32. |
Pucci A, Batterham RL. Mechanisms underlying the weight loss effects of RYGB and SG: similar, yet different. J Endocrinol Invest, 2019, 42(2): 117-128.
|
33. |
Jumpertz R, Le DS, Turnbaugh PJ, et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr, 2011, 94(1): 58-65.
|
34. |
Damms-Machado A, Mitra S, Schollenberger AE, et al. Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption. Biomed Res Int, 2015, 2015: 806248.
|
35. |
Liou AP, Paziuk M, Luevano JM, et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med, 2013, 5(178): 178ra41.
|
36. |
朱佑民. 益生菌功效、应用及研发方向. 中国社区医师, 2022, 38(28): 7-9.
|
37. |
Sassone-Corsi M, Raffatellu M. No vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. J Immunol, 2015, 194(9): 4081-4087.
|
38. |
Moya-Pérez A, Neef A, Sanz Y. Bifidobacterium pseudocatenulatum CECT 7765 reduces obesity-associated inflammation by restoring the lymphocyte-macrophage balance and gut microbiota structure in high-fat diet-fed mice. PLoS One, 2015, 10(7): e0126976.
|
39. |
Galyean S, Sawant D, Shin AC. Immunometabolism, micronutrients, and bariatric surgery: the use of transcriptomics and microbiota-targeted therapies. Mediators Inflamm, 2020, 2020: 8862034.
|
40. |
Sherf-Dagan S, Zelber-Sagi S, Zilberman-Schapira G, et al. Probiotics administration following sleeve gastrectomy surgery: a randomized double-blind trial. Int J Obes (Lond), 2018, 42(2): 147-155.
|
41. |
Gibson GR, Hutkins R, Sanders ME, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol, 2017, 14(8): 491-502.
|
42. |
Ribeiro MC, Levi Y, Moraschini V, et al. Effects of prebiotic therapy on gastrointestinal microbiome of individuals with different inflammatory conditions: a systematic review of randomized controlled trials. Probiotics Antimicrob Proteins, 2023 Apr 24. doi: 10.1007/s12602-023-10075-5.
|
43. |
Cani PD, Lecourt E, Dewulf EM, et al. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr, 2009, 90(5): 1236-1243.
|
44. |
Gavrilas LI, Corina I, Balacescu O, et al. Intake of plant based foods and colorectal cancer. A case-control ctudy in Romania. B Uasvm-Food, 2018, 75(2): 1.
|
45. |
Zhang C, Derrien M, Levenez F, et al. Ecological robustness of the gut microbiota in response to ingestion of transient food-borne microbes. ISME J, 2016, 10(9): 2235-2245.
|
46. |
David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014, 505(7484): 559-563.
|
47. |
Gentile JKA, Oliveira KD, Pereira JG, et al. The intestinal microbiome in patients undergoing bariatric surgery: a systematic review. Arq Bras Cir Dig, 2022, 35: e1707.
|
48. |
von Schwartzenberg RJ, Bisanz JE, Lyalina S, et al. Caloric restriction disrupts the microbiota and colonization resistance. Nature, 2021, 595(7866): 272-277.
|
49. |
Mika A, Janczy A, Waleron K, et al. The impact of the interplay of the intestinal microbiome and diet on the metabolomic and health outcomes of bariatric surgery. Obes Rev, 2022, 23(8): e13455.
|
50. |
Song D, Cheng L, Zhang X, et al. The modulatory effect and the mechanism of flavonoids on obesity. J Food Biochem, 2019, 43(8): e12954.
|
51. |
Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology, 2012, 143(4): 913-916.
|
52. |
Kootte RS, Levin E, Salojärvi J, et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab, 2017, 26(4): 611-619.
|
53. |
Lahtinen P, Juuti A, Luostarinen M, et al. Effectiveness of fecal microbiota transplantation for weight loss in patients with obesity undergoing bariatric surgery: a randomized clinical trial. JAMA Netw Open, 2022, 5(12): e2247226.
|
54. |
Yu EW, Gao L, Stastka P, et al. Fecal microbiota transplantation for the improvement of metabolism in obesity: The FMT-TRIM double-blind placebo-controlled pilot trial. PLoS Med, 2020, 17(3): e1003051.
|
55. |
Hill C. Balancing the risks and rewards of live biotherapeutics. Nat Rev Gastroenterol Hepatol, 2020, 17(3): 133-134.
|
56. |
王娜, 周勇, 李卡. 肠道菌群与腹部手术后胃肠功能障碍的相关性研究进展. 中国普外基础与临床杂志, 2022, 29(2): 248-254.
|