1. |
Ajani JA, D’Amico TA, Bentrem DJ, et al. Gastric Cancer, Version 2. 2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw, 2022, 20(2): 167-192.
|
2. |
Li K, Zhang A, Li X, et al. Advances in clinical immunotherapy for gastric cancer. Biochim Biophys Acta Rev Cancer, 2021, 1876(2): 188615. doi: 10.1016/j.bbcan.2021.188615.
|
3. |
Ponte JF, Lanieri L, Khera E, et al. Antibody co-administration can improve systemic and local distribution of antibody-drug conjugates to increase in vivo efficacy. Mol Cancer Ther, 2021, 20(1): 203-212.
|
4. |
Dean AQ, Luo S, Twomey JD, et al. Targeting cancer with antibody-drug conjugates: promises and challenges. MAbs, 2021, 13(1): 1951427. doi: 10.1080/19420862.2021.1951427.
|
5. |
Ornes S. Antibody-drug conjugates. Proc Natl Acad Sci U S A, 2013, 110(34): 13695. doi: 10.1073/pnas.1314120110.
|
6. |
Swaminathan M, Cortes JE. Update on the role of gemtuzumab-ozogamicin in the treatment of acute myeloid leukemia. Ther Adv Hematol, 2023, 14: 20406207231154708.
|
7. |
Tamura K, Tsurutani J, Takahashi S, et al. Trastuzumab deruxtecan (DS-8201a) in patients with advanced HER2-positive breast cancer previously treated with trastuzumab emtansine: a dose-expansion, phase 1 study. Lancet Oncol, 2019, 20(6): 816-826.
|
8. |
Bang K, Cheon J, Park YS, et al. Association between HER2 heterogeneity and clinical outcomes of HER2-positive gastric cancer patients treated with trastuzumab. Gastric Cancer, 2022, 25(4): 794-803.
|
9. |
Steffenfauseweh H, Rottschäfer D, Vishnevskiy YV, et al. Isolation of an annulated 1, 4-distibabenzene diradicaloid. Angew Chem Int Ed Engl, 2023, 62(19): e202216003. doi: 10.1002/anie.202216003.
|
10. |
Schwartz RS. Paul Ehrlich’s magic bullets. N Engl J Med, 2004, 350(11): 1079-1080.
|
11. |
Jin Y, Edalatian Zakeri S, Bahal R, et al. New technologies bloom together for bettering cancer drug conjugates. Pharmacol Rev, 2022, 74(3): 680-711.
|
12. |
Nagornov KO, Gasilova N, Kozhinov AN, et al. Drug-to-antibody ratio estimation via proteoform peak integration in the analysis of antibody-oligonucleotide conjugates with orbitrap fourier transform mass spectrometry. Anal Chem, 2021, 93(38): 12930-12937.
|
13. |
Wolska-Washer A, Robak T. Safety and tolerability of antibody-drug conjugates in cancer. Drug Saf, 2019, 42(2): 295-314.
|
14. |
Groff D, Carlos NA, Chen R, et al. Development of an E. coli strain for cell-free ADC manufacturing. Biotechnol Bioeng, 2022, 119(1): 162-175.
|
15. |
Yu J, Song Y, Tian W. How to select IgG subclasses in developing anti-tumor therapeutic antibodies. J Hematol Oncol, 2020, 13(1): 45. doi: 10.1186/s13045-020-00876-4.
|
16. |
Sawant MS, Streu CN, Wu L, et al. Toward drug-like multispecific antibodies by design. Int J Mol Sci, 2020, 21(20): 7496.
|
17. |
Kang TH, Jung ST. Boosting therapeutic potency of antibodies by taming Fc domain functions. Exp Mol Med, 2019, 51(11): 1-9.
|
18. |
Li Z, Li Y, Chang HP, et al. Effect of size on solid tumor disposition of protein therapeutics. Drug Metab Dispos, 2019, 47(10): 1136-1145.
|
19. |
MacTaggart B, Kashina A. Posttranslational modifications of the cytoskeleton. Cytoskeleton (Hoboken), 2021, 78(4): 142-173.
|
20. |
Hong Y, Nam SM, Moon A. Antibody-drug conjugates and bispecific antibodies targeting cancers: applications of click chemistry. Arch Pharm Res, 2023, 46(3): 131-148.
|
21. |
Jin Y, Schladetsch MA, Huang X, et al. Stepping forward in antibody-drug conjugate development. Pharmacol Ther, 2022, 229: 107917. doi: 10.1016/j.pharmthera.2021.107917.
|
22. |
Conilh L, Sadilkova L, Viricel W, et al. Payload diversification: a key step in the development of antibody-drug conjugates. J Hematol Oncol, 2023, 16(1): 3. doi: 10.1186/s13045-022-01397-y.
|
23. |
Li F, Emmerton KK, Jonas M, et al. Intracellular released payload influences potency and bystander-killing effects of antibody-drug conjugates in preclinical models. Cancer Res, 2016, 76(9): 2710-2719.
|
24. |
Su Z, Xiao D, Xie F, et al. Antibody-drug conjugates: recent advances in linker chemistry. Acta Pharm Sin B, 2021, 11(12): 3889-3907.
|
25. |
Hååg P, Olsson M, Forsberg J, et al. Caspase-2 is a mediator of apoptotic signaling in response to gemtuzumab ozogamicin in acute myeloid leukemia. Cell Death Discov, 2022, 8(1): 284. doi: 10.1038/s41420-022-01071-9.
|
26. |
Yang X, Li C, Li P, et al. Ratiometric optical probes for biosensing. Theranostics, 2023, 13(8): 2632-2656.
|
27. |
Giugliano F, Corti C, Tarantino P, et al. Bystander effect of antibody-drug conjugates: fact or fiction? Curr Oncol Rep, 2022, 24(7): 809-817.
|
28. |
Modi S, Park H, Murthy RK, et al. Antitumor activity and safety of trastuzumab deruxtecan in patients with HER2-low-expressing advanced breast cancer: results from a phase Ⅰb study. J Clin Oncol, 2020, 38(17): 1887-1896.
|
29. |
Ogitani Y, Hagihara K, Oitate M, et al. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci, 2016, 107(7): 1039-1046.
|
30. |
Yamashita-Kashima Y, Shu S, Osada M, et al. Combination efficacy of pertuzumab and trastuzumab for trastuzumab emtansine-resistant cells exhibiting attenuated lysosomal trafficking or efflux pumps upregulation. Cancer Chemother Pharmacol, 2020, 86(5): 641-654.
|
31. |
Loganzo F, Tan X, Sung M, et al. Tumor cells chronically treated with a trastuzumab-maytansinoid antibody-drug conjugate develop varied resistance mechanisms but respond to alternate treatments. Mol Cancer Ther, 2015, 14(4): 952-963.
|
32. |
Le Joncour V, Martins A, Puhka M, et al. A novel anti-HER2 antibody-drug conjugate XMT-1522 for HER2-positive breast and gastric cancers resistant to trastuzumab emtansine. Mol Cancer Ther, 2019, 18(10): 1721-1730.
|
33. |
叶春, 祁兴顺, 李谦谦, 等. XELOX联合曲妥珠单抗在HER2阳性老年晚期胃癌转化治疗中的疗效观察. 中国普外基础与临床杂志, 2022, 29(12): 1623-1627.
|
34. |
Tarantino P, Tolaney SM. The dawn of the antibody-drug conjugates era: how T-DM1 reinvented the future of chemotherapy for solid tumors. Cancer Res, 2022, 82(20): 3659-3661.
|
35. |
Barok M, Tanner M, Köninki K, et al. Trastuzumab-DM1 is highly effective in preclinical models of HER2-positive gastric cancer. Cancer Lett, 2011, 306(2): 171-179.
|
36. |
Verma S, Miles D, Gianni L, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med, 2012, 367(19): 1783-1791.
|
37. |
Oh DY, Bang YJ. HER2-targeted therapies - a role beyond breast cancer. Nat Rev Clin Oncol, 2020, 17(1): 33-48.
|
38. |
Thuss-Patience PC, Shah MA, Ohtsu A, et al. Trastuzumab emtansine versus taxane use for previously treated HER2-positive locally advanced or metastatic gastric or gastro-oesophageal junction adenocarcinoma (GATSBY): an international randomised, open-label, adaptive, phase 2/3 study. Lancet Oncol, 2017, 18(5): 640-653.
|
39. |
Seo S, Ryu MH, Park YS, et al. Loss of HER2 positivity after anti-HER2 chemotherapy in HER2-positive gastric cancer patients: results of the GASTric cancer HER2 reassessment study 3 (GASTHER3). Gastric Cancer, 2019, 22(3): 527-535.
|
40. |
Deeks ED. Disitamab vedotin: first approval. Drugs, 2021, 81(16): 1929-1935.
|
41. |
Xu Y, Wang Y, Gong J, et al. Phase Ⅰ study of the recombinant humanized anti-HER2 monoclonal antibody-MMAE conjugate RC48-ADC in patients with HER2-positive advanced solid tumors. Gastric Cancer, 2021, 24(4): 913-925.
|
42. |
Peng Z, Liu T, Wei J, et al. Efficacy and safety of a novel anti-HER2 therapeutic antibody RC48 in patients with HER2-overexpressing, locally advanced or metastatic gastric or gastroesophageal junction cancer: a single-arm phase Ⅱ study. Cancer Commun (Lond), 2021, 41(11): 1173-1182.
|
43. |
Takegawa N, Nonagase Y, Yonesaka K, et al. DS-8201a, a new HER2-targeting antibody-drug conjugate incorporating a novel DNA topoisomerase Ⅰ inhibitor, overcomes HER2-positive gastric cancer T-DM1 resistance. Int J Cancer, 2017, 141(8): 1682-1689.
|
44. |
Shitara K, Iwata H, Takahashi S, et al. Trastuzumab deruxtecan (DS-8201a) in patients with advanced HER2-positive gastric cancer: a dose-expansion, phase 1 study. Lancet Oncol, 2019, 20(6): 827-836.
|
45. |
Zhang J, Ji D, Shen W, et al. Phase Ⅰ trial of a novel anti-HER2 antibody-drug conjugate, ARX788, for the treatment of HER2-positive metastatic breast cancer. Clin Cancer Res, 2022: OF1-OF10.
|
46. |
Skidmore L, Sakamuri S, Knudsen NA, et al. ARX788, a site-specific anti-HER2 antibody-drug conjugate, demonstrates potent and selective activity in HER2-low and T-DM1-resistant breast and gastric cancers. Mol Cancer Ther, 2020, 19(9): 1833-1843.
|
47. |
Zhang Y, Qiu MZ, Wang JF, et al. Phase 1 multicenter, dose-expansion study of ARX788 as monotherapy in HER2-positive advanced gastric and gastroesophageal junction adenocarcinoma. Cell Rep Med, 2022, 3(11): 100814. doi: 10.1016/ j.xcrm.2022.100814.
|
48. |
Capone E, Lattanzio R, Gasparri F, et al. EV20/NMS-P945, a novel thienoindole based antibody-drug conjugate targeting HER-3 for solid tumors. Pharmaceutics, 2021, 13(4): 483. doi: 10.3390/pharmaceutics13040483.
|
49. |
Prasad H, Mathew JKK, Visweswariah SS. Receptor guanylyl cyclase C and cyclic GMP in health and disease: perspectives and therapeutic opportunities. Front Endocrinol (Lausanne), 2022, 13: 911459. doi: 10.3389/fendo.2022.911459.
|
50. |
Almhanna K, Kalebic T, Cruz C, et al. Phase Ⅰ study of the investigational anti-guanylyl cyclase antibody-drug conjugate TAK-264 (MLN0264) in adult patients with advanced gastrointestinal malignancies. Clin Cancer Res, 2016, 22(20): 5049-5057.
|
51. |
Bang YJ, Takano T, Lin CC, et al. TAK-264 (MLN0264) in previously treated Asian patients with advanced gastrointestinal carcinoma expressing guanylyl cyclase C: results from an open-label, non-randomized phase 1 study. Cancer Res Treat, 2018, 50(2): 398-404.
|
52. |
Qiu S, Zhang J, Wang Z, et al. Targeting Trop-2 in cancer: recent research progress and clinical application. Biochim Biophys Acta Rev Cancer, 2023, 1878(4): 188902. doi: 10.1016/ j.bbcan.2023.188902.
|
53. |
Cardillo TM, Govindan SV, Sharkey RM, et al. Sacituzumab govitecan (IMMU-132), an anti-Trop-2/SN-38 antibody-drug conjugate: characterization and efficacy in pancreatic, gastric, and other cancers. Bioconjug Chem, 2015, 26(5): 919-931.
|
54. |
Cheng Y, Yuan X, Tian Q, et al. Preclinical profiles of SKB264, a novel anti-TROP2 antibody conjugated to topoisomerase inhibitor, demonstrated promising antitumor efficacy compared to IMMU-132. Front Oncol, 2022, 12: 951589. doi: 10.3389/fonc.2022.951589.
|
55. |
Fuentes-Antrás J, Genta S, Vijenthira A, et al. Antibody-drug conjugates: in search of partners of choice. Trends Cancer, 2023, 9(4): 339-354.
|