- Department of Thyroid and Breast Surgery, Bayannur Hospital, Bayannur, Inner Mongolia Autonomous Region 015000, P. R. China;
Citation: YUAN Shuanglong, XUE Jiang, NIU Xiaoye. Relation between genetic variations and diagnosis, treatment, or prognosis of papillary thyroid cancer: a literature review. CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY, 2024, 31(10): 1272-1280. doi: 10.7507/1007-9424.202404073 Copy
1. | 何林烨, 王艺超, 李志辉. 2022年中国甲状腺癌流行情况分析: 基于《中国肿瘤登记年报》2005–2018年数据. 中国普外基础与临床杂志, 2024, 31(7): 790-795. |
2. | Sui C, Liang N, Du R, et al. Time trend analysis of thyroid cancer surgery in China: single institutional database analysis of 15 000 patients. Endocrine, 2020, 68(3): 617-628. |
3. | Wang F, Zhao S, Shen X, et al. BRAFV600E confers male sex disease-specific mortality risk in patients with papillary thyroid cancer. J Clin Oncol, 2018, 36: 2787-2795. |
4. | Xie Z, Lun Y, Li X, et al. Bioinformatics analysis of the clinical value and potential mechanisms of AHNAK2 in papillary thyroid carcinoma. Aging (Albany NY), 2020, 12: 18163-18180. |
5. | Boucai L, Zafereo M, Cabanillas ME. Thyroid cancer: A review. JAMA, 2024, 331(5): 425-435. |
6. | Mondragón-Terán P, López-Hernández LB, Gutiérrez-Salinas J, et al. Intracellular signaling mechanisms in thyroid cancer. Cir Cir, 2016, 84(5): 434-443. |
7. | Mi L, Liang N, Sun H. A comprehensive analysis of KRT19 combined with immune infiltration to predict breast cancer prognosis. Genes (Basel), 2022, 13(10): 1838. doi: 10.3390/genes13101838. |
8. | Xing M. Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer. Thyroid, 2010, 20(7): 697-706. |
9. | Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell, 2014, 159(3): 676-690. |
10. | 宁艳丽, 黄中柯, 杜凡, 等. 77基因联合检测评价甲状腺乳头状癌基因变异. 实用肿瘤杂志, 2024, 39(1): 63-68. |
11. | Toda S, Iwasaki H, Okubo Y, et al. The frequency of mutations in advanced thyroid cancer in Japan: a single-center study. Endocr J, 2024, 71(1): 31-37. |
12. | Wang Y, Wang H, Tan G, et al. Application value of multi-gene mutation detection in the clinical management of pediatric papillary thyroid carcinoma: a preliminary exploration. Front Endocrinol (Lausanne), 2024, 15: 1405142. doi: 10.3389/fendo.2024.1405142. |
13. | Li M, Jia HT, Qian QQ, et al. Genomic characterization of high-recurrence risk papillary thyroid carcinoma in a southern Chinese population. Diagn Pathol, 2020, 15(1): 49. doi: 10.1186/s13000-020-00962-8. |
14. | Chung JH. BRAF and TERT promoter mutations: clinical application in thyroid cancer. Endocr J, 2020, 67(6): 577-584. |
15. | Nicolson NG, Murtha TD, Dong W, et al. Comprehensive genetic analysis of follicular thyroid carcinoma predicts prognosis independent of histology. J Clin Endocrinol Metab, 2018, 103(7): 2640-2650. |
16. | Smida J, Salassidis K, Hieber L, et al. Distinct frequency of ret rearrangements inpapillary thyroid carcinomas of children and adults from Belarus. Int J Cancer, 1999, 80: 32-38. |
17. | Paulson VA, Rudzinski ER, Hawkins DS. Thyroid cancer in the pediatric population. Genes (Basel), 2019, 10(9): 723. doi: 10.3390/genes10090723. |
18. | Li AY, McCusker MG, Russo A, et al. RET fusions in solid tumors. Cancer Treat Rev, 2019, 81: 101911. doi: 10.1016/j.ctrv.2019.101911. |
19. | Khan MS, Qadri Q, Makhdoomi MJ, et al. RET/PTC gene rearrangements in thyroid carcinogenesis: assessment and clinico-pathological correlations. Pathol Oncol Res, 2020, 26(1): 507-513. |
20. | Romei C, Ciampi R, Elisei R. A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma. Nat Rev Endocrinol, 2016, 12(4): 192-202. |
21. | Huang Y, Lin P, Liao J, et al. Next-generation sequencing identified that RET variation associates with lymph node metastasis and the immune microenvironment in thyroid papillary carcinoma. BMC Endocr Disord, 2024, 24(1): 68. doi: 10.1186/s12902-024-01586-5. |
22. | Karunamurthy A, Panebianco F, Hsiao SJ, et al. Prevalence and phenotypic correlations of EIF1AX mutations in thyroid nodules. Endocr Relat Cancer, 2016, 23: 295-301. |
23. | Abi-Raad R, Xu B, Gilani S, et al. EIF1AX mutation in thyroid nodules: a histopathologic analysis of 56 cases in the context of institutional practices. Virchows Arch, 2024 Sep 3. doi: 10.1007/s00428-024-03914-5. |
24. | Kimura ET, Nikiforova MN, Zhu Z, et al. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res, 2003, 63(7): 1454-1457. |
25. | Kondo T, Ezzat S, Asa SL. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer, 2006, 6(4): 292-306. |
26. | 中华人民共和国国家卫生健康委员会医政医管局. 甲状腺癌诊疗指南(2022年版). 中国实用外科杂志, 2022, 42(12): 1343-1357, 1363. |
27. | Haugen BR. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: What is new and what has changed? Cancer, 2017, 123: 372-381. |
28. | Min YK, Kim JK, Park KS, et al. Evaluation of droplet digital PCR for the detection of BRAFV600E in fine-needle aspiration specimens of thyroid nodules. Ann Lab Med, 2024, 44(6): 553-561. |
29. | Fu J, Yin X, Wang X, et al. Diagnostic value of FNAC combined with BRAFV600E mutation detection in Hashimoto’s thyroiditis complicated with papillary thyroid carcinoma. Front Endocrinol (Lausanne), 2024, 15: 1366724. doi: 10.3389/fendo.2024.1366724. |
30. | Deng J, Yu L, Luo S, et al. The BRAFV600E mutation and clinicopathological changes among patients with Hashimoto thyroiditis, papillary thyroid carcinoma with Hashimoto thyroiditis, and nodular goiter. Appl Immunohistochem Mol Morphol, 2024, 32(7): 345-349. |
31. | Qi W, Shi C, Zhang P, et al. Effect of BRAFV600E mutation detection of fine-needle aspiration biopsy on diagnosis and treatment guidance of papillary thyroid carcinoma. Pathol Res Pract, 2020, 216: 153037. doi: 10.1016/j.prp.2020.153037. |
32. | Kakudo K. Different threshold of malignancy for RAS-like thyroid tumors causes significant differences in thyroid nodule practice. Cancers (Basel), 2022, 14(3): 812. doi: 10.3390/cancers14030812. |
33. | Labarge B, Walter V, Lengerich EJ, et al. Evidence of a positive association between malpractice climate and thyroid cancer incidence in the United States. PLoS ONE, 2018, 13: e0199862. doi: 10.1371/journal.pone.0199862. |
34. | Liu R, Xing M. Diagnostic and prognostic TERT promoter mutations in thyroid fine-needle aspiration biopsy. Endocr Relat Cancer, 2014, 21(5): 825-830. |
35. | Xing M, Liu R, Liu X, et al. BRAFV600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J Clin Oncol, 2014, 32(25): 2718-2726. |
36. | da Costa VR, Bim LV, Pacheco E Silva LDP, et al. Advances in detecting low prevalence somatic TERT promoter mutations in papillary thyroid carcinoma. Front Endocrinol (Lausanne), 2021, 12: 643151. doi: 10.3389/fendo.2021.643151. |
37. | Macerola E, Poma AM, Vignali P, et al. MicroRNA expression profiling of RAS-mutant thyroid tumors with follicular architecture: microRNA signatures to discriminate benign from malignant lesions. J Endocrinol Invest, 2023, 46(8): 1651-1662. |
38. | . Brogna MR, Collina F, Chiofalo MG, et al. Case report & review: Bilateral NIFTP harboring concomitant HRAS and KRAS mutation: Report of an unusual case and literature review. Mol Carcinog, 2024 Sep 4. doi: 10.1002/mc.23813. |
39. | Riccio IR, LaForteza AC, Hussein MH, et al. Diagnostic utility of RAS mutation testing for refining cytologically indeterminate thyroid nodules. EXCLI J, 2024, 23: 283-299. |
40. | Sun C, Wang L, Huang S, et al. Reversible and adaptive resistance to BRAFV600E inhibition in melanoma. Nature, 2014, 508(7494): 118-122. |
41. | Fiskus W, Mitsiades N. B-Raf inhibition in the clinic: Present and future. Annu Rev Med, 2016, 67: 29-43. |
42. | Crispo F, Notarangelo T, Pietrafesa M, et al. BRAF inhibitors in thyroid cancer: clinical impact, mechanisms of resistance and future perspectives. Cancers (Basel), 2019, 11(9): 1388. doi: 10.3390/cancers11091388. |
43. | Brose MS, Cabanillas ME, Cohen EEW, et al. Vemurafenib in patients with BRAFV600E-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial. Lancet Oncol, 2016, 17: 1272-1282. |
44. | Chen D, Su X, Zhu L, et al. Papillary thyroid cancer organoids harboring BRAFV600E mutation reveal potentially beneficial effects of BRAF inhibitor-based combination therapies. J Transl Med, 2023, 21: 9. doi: 10.1186/s12967-022-03848-z. |
45. | Valerio L, Pieruzzi L, Giani C, et al. Targeted therapy in thyroid cancer: State of the art. Clin Oncol, 2017, 29: 316-324. |
46. | Ascierto PA, Kirkwood JM, Grob JJ, et al. The role of BRAF V600 mutation in melanoma. J Transl Med, 2012, 10: 85. doi: 10.1186/1479-5876-10-85. |
47. | Liu D, Hou P, Liu Z, et al. Genetic alterations in the phosphoinositide 3-kinase/Akt signaling pathway confer sensitivity of thyroid cancer cells to therapeutic targeting of Akt and mammalian target of rapamycin. Cancer Res, 2009, 69: 7311-7319. |
48. | Subbiah V, Kreitman RJ, Wainberg ZA, et al. Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600-mutant anaplastic thyroid cancer. J Clin Oncol, 2018, 36(1): 7-13. |
49. | Lanzi C, Cassinelli G, Cuccuru G, et al. Inactivation of Ret/Ptc1 oncoprotein and inhibition of papillary thyroid carcinoma cell proliferation by indolinone RPI-1. Cell Mol Life Sci, 2003, 60(7): 1449-1459. |
50. | Carlomagno F, Santoro M. Identification of RET kinase inhibitors as potential new treatment for sporadic and inherited thyroid cancer. J Chemother, 2004, 16 Suppl 4: 49-51. |
51. | Carlomagno F, Vitagliano D, Guida T, et al. The kinase inhibitor PP1 blocks tumorigenesis induced by RET oncogenes. Cancer Res, 2002, 62(4): 1077-1082. |
52. | Iwahashi N, Murakami H, Nimura Y, et al. Activation of RET tyrosine kinase regulates interleukin-8 production by multiple signaling pathways. Biochem Biophys Res Commun, 2002, 294(3): 642-649. |
53. | Melillo RM, Barone MV, Lupoli G, et al. Ret-mediated mitogenesis requires Src kinase activity. Cancer Res, 1999, 59: 1120-1126. |
54. | Lanzi C, Cassinelli G, Cuccuru G, et al. RET/PTC oncoproteins: molecular targets of new drugs. Tumori, 2003, 89(5): 520-522. |
55. | Marsee DK, Venkateswaran A, Tao H, et al. Inhibition of heat shock protein 90, a novel RET/PTC1-associated protein, increases radioiodide accumulation in thyroid cells. J Biol Chem, 2004, 279(42): 43990-43997. |
56. | De Falco V, Buonocore P, Muthu M, et al. Ponatinib (AP24534) is a novel potent inhibitor of oncogenic RET mutants associated with thyroid cancer. J Clin Endocrinol Metab, 2013, 98(5): E811-E819. |
57. | Ouyang B, Knauf JA, Smith EP, et al. Inhibitors of Raf kinase activity block growth of thyroid cancer cells with RET/PTC or BRAF mutations in vitro and in vivo. Clin Cancer Res, 2006, 12(6): 1785-1793. |
58. | Chatterjee S, Rhee Y, Chung PS, et al. Sulforaphene enhances the efficacy of photodynamic therapy in anaplastic thyroid cancer through Ras/RAF/MEK/ERK pathway suppression. J Photochem Photobiol B, 2018, 179: 46-53. |
59. | Takano Y, Shimokata T, Urakawa H, et al. Long-term response to MEK inhibitor monotherapy in a patient with papillary thyroid carcinoma harboring BRAFV600E mutation. Int Cancer Conf J, 2024, 13(3): 184-188.Takano Y, Shimokata T, Urakawa H, et al. Long-term response to MEK inhibitor monotherapy in a patient with papillary thyroid carcinoma harboring BRAFV600E mutation. Int Cancer Conf J, 2024, 13(3): 184-188. |
60. | Henderson YC, Chen Y, Frederick MJ, et al. MEK inhibitor PD0325901 significantly reduces the growth of papillary thyroid carcinoma cells in vitro and in vivo. Mol Cancer Ther, 2010, 9(7): 1968-1976. |
61. | Bapat N, Ferraro T, Esper L, et al. Treatment of unresectable BRAFV600E, TERT-mutated differentiated papillary thyroid cancer with dabrafenib and trametinib. JCEM Case Rep, 2024, 2(8): luae112. doi: 10.1210/jcemcr/luae112. |
62. | Tan J, Liu R, Zhu G, et al. TERT promoter mutation determines apoptotic and therapeutic responses of BRAF-mutant cancers to BRAF and MEK inhibitors: Achilles Heel. Proc Natl Acad Sci USA, 2020, 117: 15846-15851. |
63. | Su YJ, Cheng SH, Qian J, et al. Neoadjuvant therapy with anlotinib in a locally advanced and pulmonary metastasis PTC patient harboring TERT promoter and BRAFV600E mutations: a case report. Arch Endocrinol Metab, 2023, 67(6): e000659. doi: 10.20945/2359-3997000000659. |
64. | Xing M, Alzahrani AS, Carson KA, V, et al. Association between BRAFV600E mutation and mortality in patients with papillary thyroid cancer. JAMA, 2013, 309: 1493-1501. |
65. | Fagin JA, Wells SA Jr. Biologic and clinical perspectives on thyroid cancer. N Engl J Med, 2016, 375: 1054-1067. |
66. | Riesco-Eizaguirre G, Gutierrez-Martinez P, Garcia-Cabezas MA, et al. The oncogene BRAFV600E is associated with a high risk of recurrence and less differentiated papillary thyroid carcinoma due to the impairment of Na+/I– targeting to the membrane. Endocr Relat Cancer, 2006, 13: 257-269. |
67. | Boucai L, Saqcena M, Kuo F, et al. Genomic and transcriptomic characteristics of metastatic thyroid cancers with exceptional responses to radioactive iodine therapy. Clin Cancer Res, 2023, 29(8): 1620-1630. |
68. | Bai Y, Guo T, Huang X, et al. In papillary thyroid carcinoma, expression by immunohistochemistry of BRAFV600E, PD-L1, and PD-1 is closely related. Virchows Arch, 2018, 472: 779-787. |
69. | Al-Salam S, Sharma C, Afandi B, et al. BRAF and KRAS mutations in papillary thyroid carcinoma in the United Arab Emirates. PloS One, 2020, 15: e0231341-e. doi: 10.1371/journal.pone.0231341. |
70. | 余幼林, 余军林, 沈雄山, 等. 生物信息学分析甲状腺癌免疫基因构建预后评估模型及对免疫细胞浸润的影响. 实用肿瘤杂志, 2022, 37(1): 50-59. |
71. | 中华医学会核医学分会. 131I治疗分化型甲状腺癌指南(2021版). 中华核医学与分子影像杂志, 2021, 41(4): 218-241. |
72. | Cuccurullo V, di Stasio GD, Cascini GL. PET/CT in thyroid cancer-the importance of BRAF mutations. Nucl Med Rev Cent East Eur, 2020, 23(2): 97-102. |
73. | Haugen BR, Alexander EK, Bible KC, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association Guidelines Task Force on thyroid nodules and differentiated thyroid cancer. Thyroid, 2016, 26(1): 1-133. |
74. | Zhou SL, Guo YP, Zhang L, et al. Predicting factors of central lymph node metastasis and BRAFV600E mutation in Chinese population with papillary thyroid carcinoma. World J Surg Oncol, 2021, 19(1): 211. doi: 10.1186/s12957-021-02326-y. |
75. | Soeratman AR, Kartini D, Andinata B, et al. Lymph node metastasis in papillary thyroid carcinoma, a study of BRAFV600E and TERT promoter mutations. Asian Pac J Cancer Prev, 2024, 25(6): 2043-2049. |
76. | Lu J, Gao J, Zhang J, et al. Association between BRAFV600E mutation and regional lymph node metastasis in papillary thyroid carcinoma. Int J Clin Exp Pathol, 2015, 8(1): 793-799. |
77. | Chen P, Pan L, Huang W, et al. BRAFV600E and lymph node metastases in papillary thyroid cancer. Endocr Connec, 2020, 9(10): 999-1008. |
78. | Mao J, Huang X, Okla MK, et al. Risk factors for TERT promoter mutations with papillary thyroid carcinoma patients: a meta-analysis and systematic review. Comput Math Methods Med, 2022, 2022: 1721526. doi: 10.1155/2022/1721526. |
79. | Nakao T, Matsuse M, Saenko V, et al. Preoperative detection of the TERT promoter mutations in papillary thyroid carcinomas. Clin Endocrinol (Oxf), 2021, 95(5): 790-799. |
80. | Marczyk VR, Maia AL, Goemann IM. Distinct transcriptional and prognostic impacts of TERT promoter mutations C228T and C250T in papillary thyroid carcinoma. Endocr Relat Cancer, 2024, 31(9): e240058. doi: 10.1530/ERC-24-0058. |
81. | McKelvey BA, Umbricht CB, Zeiger MA. Telomerase reverse transcriptase (TERT) regulation in thyroid cancer: a review. Front Endocrinol (Lausanne), 2020, 11: 485. 10.3389/fendo. 2020.00485. |
82. | McKelvey BA, Zeiger MA, Umbricht CB. Characterization of TERT and BRAF copy number variation in papillary thyroid carcinoma: An analysis of the cancer genome atlas study. Genes Chromosomes Cancer, 2021, 60(6): 403-409. |
83. | Seo DH, Lee SG, Choi SM, et al. Promoter mutation-independent TERT expression is related to immune-enriched milieu in papillary thyroid cancer. Endocr Relat Cancer, 2024: ERC-24-0068. doi: 10.1530/ERC-24-0068. |
84. | Yang X, Li J, Li X, et al. TERT promoter mutation predicts radioiodine-refractory character in distant metastatic differentiated thyroid cancer. J Nucl Med, 2017, 58(2): 258-265. |
85. | Liu J, Liu R, Shen X, et al. The genetic duet of BRAFV600E and TERT promoter mutations robustly predicts loss of radioiodine avidity in recurrent papillary thyroid cancer. J Nucl Med, 2020, 61(2): 177-182. |
86. | Chen B, Shi Y, Xu Y, et al. The predictive value of coexisting BRAFV600E and TERT promoter mutations on poor outcomes and high tumour aggressiveness in papillary thyroid carcinoma: A systematic review and meta-analysis. Clin Endocrinol (Oxf), 2021, 94(5): 731-742. |
87. | Rogounovitch TI, Mankovskaya SV, Fridman MV, et al. Major oncogenic drivers and their clinicopathological correlations in sporadic childhood papillary thyroid carcinoma in Belarus. Cancers (Basel), 2021, 13(13): 3374. doi: 10.3390/cancers13133374. |
88. | Henderson YC, Shellenberger TD, Williams MD, et al. High rate of BRAF and RET/PTC dual mutations associated with recurrent papillary thyroid carcinoma. Clin Cancer Res, 2009, 15(2): 485-491. |
89. | Ahmadi S, Landa I. The prognostic power of gene mutations in thyroid cancer. Endocr Connect, 2024, 13(2): e230297. doi: 10.1530/EC-23-0297. |
90. | Póvoa AA, Teixeira E, Bella-Cueto MR, et al. Genetic determinants for prediction of outcome of patients with papillary thyroid carcinoma. Cancers (Basel), 2021, 13(9): 2048. doi: 10.3390/cancers13092048. |
91. | Xu Y, Gao J, Wang N, et al. BRAF-induced EHF expression affects TERT in aggressive papillary thyroid cancer. J Clin Endocrinol Metab, 2024, 24: dgae589. doi: 10.1210/clinem/dgae589. |
92. | Sang Y, Hu G, Xue J, et al. Risk stratification by combining common genetic mutations and TERT promoter methylation in papillary thyroid cancer. Endocrine, 2024, 85(1): 304-312. |
93. | Zhang W, Lin S, Wang Z, et al. Coexisting RET/PTC and TERT promoter mutation predict poor prognosis but effective RET and MEK targets in thyroid cancer. J Clin Endocrinol Metab, 2024, 13: dgae327. doi: 10.1210/clinem/dgae327. |
- 1. 何林烨, 王艺超, 李志辉. 2022年中国甲状腺癌流行情况分析: 基于《中国肿瘤登记年报》2005–2018年数据. 中国普外基础与临床杂志, 2024, 31(7): 790-795.
- 2. Sui C, Liang N, Du R, et al. Time trend analysis of thyroid cancer surgery in China: single institutional database analysis of 15 000 patients. Endocrine, 2020, 68(3): 617-628.
- 3. Wang F, Zhao S, Shen X, et al. BRAFV600E confers male sex disease-specific mortality risk in patients with papillary thyroid cancer. J Clin Oncol, 2018, 36: 2787-2795.
- 4. Xie Z, Lun Y, Li X, et al. Bioinformatics analysis of the clinical value and potential mechanisms of AHNAK2 in papillary thyroid carcinoma. Aging (Albany NY), 2020, 12: 18163-18180.
- 5. Boucai L, Zafereo M, Cabanillas ME. Thyroid cancer: A review. JAMA, 2024, 331(5): 425-435.
- 6. Mondragón-Terán P, López-Hernández LB, Gutiérrez-Salinas J, et al. Intracellular signaling mechanisms in thyroid cancer. Cir Cir, 2016, 84(5): 434-443.
- 7. Mi L, Liang N, Sun H. A comprehensive analysis of KRT19 combined with immune infiltration to predict breast cancer prognosis. Genes (Basel), 2022, 13(10): 1838. doi: 10.3390/genes13101838.
- 8. Xing M. Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer. Thyroid, 2010, 20(7): 697-706.
- 9. Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell, 2014, 159(3): 676-690.
- 10. 宁艳丽, 黄中柯, 杜凡, 等. 77基因联合检测评价甲状腺乳头状癌基因变异. 实用肿瘤杂志, 2024, 39(1): 63-68.
- 11. Toda S, Iwasaki H, Okubo Y, et al. The frequency of mutations in advanced thyroid cancer in Japan: a single-center study. Endocr J, 2024, 71(1): 31-37.
- 12. Wang Y, Wang H, Tan G, et al. Application value of multi-gene mutation detection in the clinical management of pediatric papillary thyroid carcinoma: a preliminary exploration. Front Endocrinol (Lausanne), 2024, 15: 1405142. doi: 10.3389/fendo.2024.1405142.
- 13. Li M, Jia HT, Qian QQ, et al. Genomic characterization of high-recurrence risk papillary thyroid carcinoma in a southern Chinese population. Diagn Pathol, 2020, 15(1): 49. doi: 10.1186/s13000-020-00962-8.
- 14. Chung JH. BRAF and TERT promoter mutations: clinical application in thyroid cancer. Endocr J, 2020, 67(6): 577-584.
- 15. Nicolson NG, Murtha TD, Dong W, et al. Comprehensive genetic analysis of follicular thyroid carcinoma predicts prognosis independent of histology. J Clin Endocrinol Metab, 2018, 103(7): 2640-2650.
- 16. Smida J, Salassidis K, Hieber L, et al. Distinct frequency of ret rearrangements inpapillary thyroid carcinomas of children and adults from Belarus. Int J Cancer, 1999, 80: 32-38.
- 17. Paulson VA, Rudzinski ER, Hawkins DS. Thyroid cancer in the pediatric population. Genes (Basel), 2019, 10(9): 723. doi: 10.3390/genes10090723.
- 18. Li AY, McCusker MG, Russo A, et al. RET fusions in solid tumors. Cancer Treat Rev, 2019, 81: 101911. doi: 10.1016/j.ctrv.2019.101911.
- 19. Khan MS, Qadri Q, Makhdoomi MJ, et al. RET/PTC gene rearrangements in thyroid carcinogenesis: assessment and clinico-pathological correlations. Pathol Oncol Res, 2020, 26(1): 507-513.
- 20. Romei C, Ciampi R, Elisei R. A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma. Nat Rev Endocrinol, 2016, 12(4): 192-202.
- 21. Huang Y, Lin P, Liao J, et al. Next-generation sequencing identified that RET variation associates with lymph node metastasis and the immune microenvironment in thyroid papillary carcinoma. BMC Endocr Disord, 2024, 24(1): 68. doi: 10.1186/s12902-024-01586-5.
- 22. Karunamurthy A, Panebianco F, Hsiao SJ, et al. Prevalence and phenotypic correlations of EIF1AX mutations in thyroid nodules. Endocr Relat Cancer, 2016, 23: 295-301.
- 23. Abi-Raad R, Xu B, Gilani S, et al. EIF1AX mutation in thyroid nodules: a histopathologic analysis of 56 cases in the context of institutional practices. Virchows Arch, 2024 Sep 3. doi: 10.1007/s00428-024-03914-5.
- 24. Kimura ET, Nikiforova MN, Zhu Z, et al. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res, 2003, 63(7): 1454-1457.
- 25. Kondo T, Ezzat S, Asa SL. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer, 2006, 6(4): 292-306.
- 26. 中华人民共和国国家卫生健康委员会医政医管局. 甲状腺癌诊疗指南(2022年版). 中国实用外科杂志, 2022, 42(12): 1343-1357, 1363.
- 27. Haugen BR. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: What is new and what has changed? Cancer, 2017, 123: 372-381.
- 28. Min YK, Kim JK, Park KS, et al. Evaluation of droplet digital PCR for the detection of BRAFV600E in fine-needle aspiration specimens of thyroid nodules. Ann Lab Med, 2024, 44(6): 553-561.
- 29. Fu J, Yin X, Wang X, et al. Diagnostic value of FNAC combined with BRAFV600E mutation detection in Hashimoto’s thyroiditis complicated with papillary thyroid carcinoma. Front Endocrinol (Lausanne), 2024, 15: 1366724. doi: 10.3389/fendo.2024.1366724.
- 30. Deng J, Yu L, Luo S, et al. The BRAFV600E mutation and clinicopathological changes among patients with Hashimoto thyroiditis, papillary thyroid carcinoma with Hashimoto thyroiditis, and nodular goiter. Appl Immunohistochem Mol Morphol, 2024, 32(7): 345-349.
- 31. Qi W, Shi C, Zhang P, et al. Effect of BRAFV600E mutation detection of fine-needle aspiration biopsy on diagnosis and treatment guidance of papillary thyroid carcinoma. Pathol Res Pract, 2020, 216: 153037. doi: 10.1016/j.prp.2020.153037.
- 32. Kakudo K. Different threshold of malignancy for RAS-like thyroid tumors causes significant differences in thyroid nodule practice. Cancers (Basel), 2022, 14(3): 812. doi: 10.3390/cancers14030812.
- 33. Labarge B, Walter V, Lengerich EJ, et al. Evidence of a positive association between malpractice climate and thyroid cancer incidence in the United States. PLoS ONE, 2018, 13: e0199862. doi: 10.1371/journal.pone.0199862.
- 34. Liu R, Xing M. Diagnostic and prognostic TERT promoter mutations in thyroid fine-needle aspiration biopsy. Endocr Relat Cancer, 2014, 21(5): 825-830.
- 35. Xing M, Liu R, Liu X, et al. BRAFV600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J Clin Oncol, 2014, 32(25): 2718-2726.
- 36. da Costa VR, Bim LV, Pacheco E Silva LDP, et al. Advances in detecting low prevalence somatic TERT promoter mutations in papillary thyroid carcinoma. Front Endocrinol (Lausanne), 2021, 12: 643151. doi: 10.3389/fendo.2021.643151.
- 37. Macerola E, Poma AM, Vignali P, et al. MicroRNA expression profiling of RAS-mutant thyroid tumors with follicular architecture: microRNA signatures to discriminate benign from malignant lesions. J Endocrinol Invest, 2023, 46(8): 1651-1662.
- 38. . Brogna MR, Collina F, Chiofalo MG, et al. Case report & review: Bilateral NIFTP harboring concomitant HRAS and KRAS mutation: Report of an unusual case and literature review. Mol Carcinog, 2024 Sep 4. doi: 10.1002/mc.23813.
- 39. Riccio IR, LaForteza AC, Hussein MH, et al. Diagnostic utility of RAS mutation testing for refining cytologically indeterminate thyroid nodules. EXCLI J, 2024, 23: 283-299.
- 40. Sun C, Wang L, Huang S, et al. Reversible and adaptive resistance to BRAFV600E inhibition in melanoma. Nature, 2014, 508(7494): 118-122.
- 41. Fiskus W, Mitsiades N. B-Raf inhibition in the clinic: Present and future. Annu Rev Med, 2016, 67: 29-43.
- 42. Crispo F, Notarangelo T, Pietrafesa M, et al. BRAF inhibitors in thyroid cancer: clinical impact, mechanisms of resistance and future perspectives. Cancers (Basel), 2019, 11(9): 1388. doi: 10.3390/cancers11091388.
- 43. Brose MS, Cabanillas ME, Cohen EEW, et al. Vemurafenib in patients with BRAFV600E-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial. Lancet Oncol, 2016, 17: 1272-1282.
- 44. Chen D, Su X, Zhu L, et al. Papillary thyroid cancer organoids harboring BRAFV600E mutation reveal potentially beneficial effects of BRAF inhibitor-based combination therapies. J Transl Med, 2023, 21: 9. doi: 10.1186/s12967-022-03848-z.
- 45. Valerio L, Pieruzzi L, Giani C, et al. Targeted therapy in thyroid cancer: State of the art. Clin Oncol, 2017, 29: 316-324.
- 46. Ascierto PA, Kirkwood JM, Grob JJ, et al. The role of BRAF V600 mutation in melanoma. J Transl Med, 2012, 10: 85. doi: 10.1186/1479-5876-10-85.
- 47. Liu D, Hou P, Liu Z, et al. Genetic alterations in the phosphoinositide 3-kinase/Akt signaling pathway confer sensitivity of thyroid cancer cells to therapeutic targeting of Akt and mammalian target of rapamycin. Cancer Res, 2009, 69: 7311-7319.
- 48. Subbiah V, Kreitman RJ, Wainberg ZA, et al. Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600-mutant anaplastic thyroid cancer. J Clin Oncol, 2018, 36(1): 7-13.
- 49. Lanzi C, Cassinelli G, Cuccuru G, et al. Inactivation of Ret/Ptc1 oncoprotein and inhibition of papillary thyroid carcinoma cell proliferation by indolinone RPI-1. Cell Mol Life Sci, 2003, 60(7): 1449-1459.
- 50. Carlomagno F, Santoro M. Identification of RET kinase inhibitors as potential new treatment for sporadic and inherited thyroid cancer. J Chemother, 2004, 16 Suppl 4: 49-51.
- 51. Carlomagno F, Vitagliano D, Guida T, et al. The kinase inhibitor PP1 blocks tumorigenesis induced by RET oncogenes. Cancer Res, 2002, 62(4): 1077-1082.
- 52. Iwahashi N, Murakami H, Nimura Y, et al. Activation of RET tyrosine kinase regulates interleukin-8 production by multiple signaling pathways. Biochem Biophys Res Commun, 2002, 294(3): 642-649.
- 53. Melillo RM, Barone MV, Lupoli G, et al. Ret-mediated mitogenesis requires Src kinase activity. Cancer Res, 1999, 59: 1120-1126.
- 54. Lanzi C, Cassinelli G, Cuccuru G, et al. RET/PTC oncoproteins: molecular targets of new drugs. Tumori, 2003, 89(5): 520-522.
- 55. Marsee DK, Venkateswaran A, Tao H, et al. Inhibition of heat shock protein 90, a novel RET/PTC1-associated protein, increases radioiodide accumulation in thyroid cells. J Biol Chem, 2004, 279(42): 43990-43997.
- 56. De Falco V, Buonocore P, Muthu M, et al. Ponatinib (AP24534) is a novel potent inhibitor of oncogenic RET mutants associated with thyroid cancer. J Clin Endocrinol Metab, 2013, 98(5): E811-E819.
- 57. Ouyang B, Knauf JA, Smith EP, et al. Inhibitors of Raf kinase activity block growth of thyroid cancer cells with RET/PTC or BRAF mutations in vitro and in vivo. Clin Cancer Res, 2006, 12(6): 1785-1793.
- 58. Chatterjee S, Rhee Y, Chung PS, et al. Sulforaphene enhances the efficacy of photodynamic therapy in anaplastic thyroid cancer through Ras/RAF/MEK/ERK pathway suppression. J Photochem Photobiol B, 2018, 179: 46-53.
- 59. Takano Y, Shimokata T, Urakawa H, et al. Long-term response to MEK inhibitor monotherapy in a patient with papillary thyroid carcinoma harboring BRAFV600E mutation. Int Cancer Conf J, 2024, 13(3): 184-188.Takano Y, Shimokata T, Urakawa H, et al. Long-term response to MEK inhibitor monotherapy in a patient with papillary thyroid carcinoma harboring BRAFV600E mutation. Int Cancer Conf J, 2024, 13(3): 184-188.
- 60. Henderson YC, Chen Y, Frederick MJ, et al. MEK inhibitor PD0325901 significantly reduces the growth of papillary thyroid carcinoma cells in vitro and in vivo. Mol Cancer Ther, 2010, 9(7): 1968-1976.
- 61. Bapat N, Ferraro T, Esper L, et al. Treatment of unresectable BRAFV600E, TERT-mutated differentiated papillary thyroid cancer with dabrafenib and trametinib. JCEM Case Rep, 2024, 2(8): luae112. doi: 10.1210/jcemcr/luae112.
- 62. Tan J, Liu R, Zhu G, et al. TERT promoter mutation determines apoptotic and therapeutic responses of BRAF-mutant cancers to BRAF and MEK inhibitors: Achilles Heel. Proc Natl Acad Sci USA, 2020, 117: 15846-15851.
- 63. Su YJ, Cheng SH, Qian J, et al. Neoadjuvant therapy with anlotinib in a locally advanced and pulmonary metastasis PTC patient harboring TERT promoter and BRAFV600E mutations: a case report. Arch Endocrinol Metab, 2023, 67(6): e000659. doi: 10.20945/2359-3997000000659.
- 64. Xing M, Alzahrani AS, Carson KA, V, et al. Association between BRAFV600E mutation and mortality in patients with papillary thyroid cancer. JAMA, 2013, 309: 1493-1501.
- 65. Fagin JA, Wells SA Jr. Biologic and clinical perspectives on thyroid cancer. N Engl J Med, 2016, 375: 1054-1067.
- 66. Riesco-Eizaguirre G, Gutierrez-Martinez P, Garcia-Cabezas MA, et al. The oncogene BRAFV600E is associated with a high risk of recurrence and less differentiated papillary thyroid carcinoma due to the impairment of Na+/I– targeting to the membrane. Endocr Relat Cancer, 2006, 13: 257-269.
- 67. Boucai L, Saqcena M, Kuo F, et al. Genomic and transcriptomic characteristics of metastatic thyroid cancers with exceptional responses to radioactive iodine therapy. Clin Cancer Res, 2023, 29(8): 1620-1630.
- 68. Bai Y, Guo T, Huang X, et al. In papillary thyroid carcinoma, expression by immunohistochemistry of BRAFV600E, PD-L1, and PD-1 is closely related. Virchows Arch, 2018, 472: 779-787.
- 69. Al-Salam S, Sharma C, Afandi B, et al. BRAF and KRAS mutations in papillary thyroid carcinoma in the United Arab Emirates. PloS One, 2020, 15: e0231341-e. doi: 10.1371/journal.pone.0231341.
- 70. 余幼林, 余军林, 沈雄山, 等. 生物信息学分析甲状腺癌免疫基因构建预后评估模型及对免疫细胞浸润的影响. 实用肿瘤杂志, 2022, 37(1): 50-59.
- 71. 中华医学会核医学分会. 131I治疗分化型甲状腺癌指南(2021版). 中华核医学与分子影像杂志, 2021, 41(4): 218-241.
- 72. Cuccurullo V, di Stasio GD, Cascini GL. PET/CT in thyroid cancer-the importance of BRAF mutations. Nucl Med Rev Cent East Eur, 2020, 23(2): 97-102.
- 73. Haugen BR, Alexander EK, Bible KC, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association Guidelines Task Force on thyroid nodules and differentiated thyroid cancer. Thyroid, 2016, 26(1): 1-133.
- 74. Zhou SL, Guo YP, Zhang L, et al. Predicting factors of central lymph node metastasis and BRAFV600E mutation in Chinese population with papillary thyroid carcinoma. World J Surg Oncol, 2021, 19(1): 211. doi: 10.1186/s12957-021-02326-y.
- 75. Soeratman AR, Kartini D, Andinata B, et al. Lymph node metastasis in papillary thyroid carcinoma, a study of BRAFV600E and TERT promoter mutations. Asian Pac J Cancer Prev, 2024, 25(6): 2043-2049.
- 76. Lu J, Gao J, Zhang J, et al. Association between BRAFV600E mutation and regional lymph node metastasis in papillary thyroid carcinoma. Int J Clin Exp Pathol, 2015, 8(1): 793-799.
- 77. Chen P, Pan L, Huang W, et al. BRAFV600E and lymph node metastases in papillary thyroid cancer. Endocr Connec, 2020, 9(10): 999-1008.
- 78. Mao J, Huang X, Okla MK, et al. Risk factors for TERT promoter mutations with papillary thyroid carcinoma patients: a meta-analysis and systematic review. Comput Math Methods Med, 2022, 2022: 1721526. doi: 10.1155/2022/1721526.
- 79. Nakao T, Matsuse M, Saenko V, et al. Preoperative detection of the TERT promoter mutations in papillary thyroid carcinomas. Clin Endocrinol (Oxf), 2021, 95(5): 790-799.
- 80. Marczyk VR, Maia AL, Goemann IM. Distinct transcriptional and prognostic impacts of TERT promoter mutations C228T and C250T in papillary thyroid carcinoma. Endocr Relat Cancer, 2024, 31(9): e240058. doi: 10.1530/ERC-24-0058.
- 81. McKelvey BA, Umbricht CB, Zeiger MA. Telomerase reverse transcriptase (TERT) regulation in thyroid cancer: a review. Front Endocrinol (Lausanne), 2020, 11: 485. 10.3389/fendo. 2020.00485.
- 82. McKelvey BA, Zeiger MA, Umbricht CB. Characterization of TERT and BRAF copy number variation in papillary thyroid carcinoma: An analysis of the cancer genome atlas study. Genes Chromosomes Cancer, 2021, 60(6): 403-409.
- 83. Seo DH, Lee SG, Choi SM, et al. Promoter mutation-independent TERT expression is related to immune-enriched milieu in papillary thyroid cancer. Endocr Relat Cancer, 2024: ERC-24-0068. doi: 10.1530/ERC-24-0068.
- 84. Yang X, Li J, Li X, et al. TERT promoter mutation predicts radioiodine-refractory character in distant metastatic differentiated thyroid cancer. J Nucl Med, 2017, 58(2): 258-265.
- 85. Liu J, Liu R, Shen X, et al. The genetic duet of BRAFV600E and TERT promoter mutations robustly predicts loss of radioiodine avidity in recurrent papillary thyroid cancer. J Nucl Med, 2020, 61(2): 177-182.
- 86. Chen B, Shi Y, Xu Y, et al. The predictive value of coexisting BRAFV600E and TERT promoter mutations on poor outcomes and high tumour aggressiveness in papillary thyroid carcinoma: A systematic review and meta-analysis. Clin Endocrinol (Oxf), 2021, 94(5): 731-742.
- 87. Rogounovitch TI, Mankovskaya SV, Fridman MV, et al. Major oncogenic drivers and their clinicopathological correlations in sporadic childhood papillary thyroid carcinoma in Belarus. Cancers (Basel), 2021, 13(13): 3374. doi: 10.3390/cancers13133374.
- 88. Henderson YC, Shellenberger TD, Williams MD, et al. High rate of BRAF and RET/PTC dual mutations associated with recurrent papillary thyroid carcinoma. Clin Cancer Res, 2009, 15(2): 485-491.
- 89. Ahmadi S, Landa I. The prognostic power of gene mutations in thyroid cancer. Endocr Connect, 2024, 13(2): e230297. doi: 10.1530/EC-23-0297.
- 90. Póvoa AA, Teixeira E, Bella-Cueto MR, et al. Genetic determinants for prediction of outcome of patients with papillary thyroid carcinoma. Cancers (Basel), 2021, 13(9): 2048. doi: 10.3390/cancers13092048.
- 91. Xu Y, Gao J, Wang N, et al. BRAF-induced EHF expression affects TERT in aggressive papillary thyroid cancer. J Clin Endocrinol Metab, 2024, 24: dgae589. doi: 10.1210/clinem/dgae589.
- 92. Sang Y, Hu G, Xue J, et al. Risk stratification by combining common genetic mutations and TERT promoter methylation in papillary thyroid cancer. Endocrine, 2024, 85(1): 304-312.
- 93. Zhang W, Lin S, Wang Z, et al. Coexisting RET/PTC and TERT promoter mutation predict poor prognosis but effective RET and MEK targets in thyroid cancer. J Clin Endocrinol Metab, 2024, 13: dgae327. doi: 10.1210/clinem/dgae327.