Objective To analyze the clinical symptoms, imaging, laboratory tests, efficacy and other indicators of patients diagnosed as diffuse parenchymal lung disease ( DPLD) , in order to provide a reference for differential diagnosis of secondary DPLD and idiopathic interstitial pneumonia ( IIP) .Methods Sixtytwo patients diagnosed as DPLD were retrospectively analyzed. Results In 62 patients with DPLD, 19 patients ( 30. 6% ) were diagnosed as secondary DPLD, 42 cases ( 67. 7% ) as IIP, 1 case ( 1. 6% ) as Langerhans cell histiocytosis. The smoking rate of the DPLD patient was 33. 8% , which was higher than general population ( 29. 7% ) . 94. 7% of the secondary DPLD patients had cough, which was higher than the IIP patients ( 71. 4%) . The average age of onset of the secondary DPLD and IIP was ( 45. 9 ±16. 8) years and ( 60. 5 ±7. 7) years respectively, without significant difference ( P gt; 0. 05) . Etiological factors of secondary DPLD were dust, pets, drugs, pesticides, decoration material, etc. The secondary DPLD patients had higher response rate to steroid therapy, but had no statistical difference compared with the IIP patients ( 46. 2% vs. 37. 5% , P gt;0. 05) . Conclusions As a group of diseases of known causes, history taking is very important for DPLD diagnosis and differential diagnosis. Clinical symptoms, imaging, and laboratory tests may provide reference for differential diagnosis of secondary DPLD and IIP.
In order to overcome the difficulty in lung parenchymal segmentation due to the factors such as lung disease and bronchial interference, a segmentation algorithm for three-dimensional lung parenchymal is presented based on the integration of surfacelet transform and pulse coupled neural network (PCNN). First, the three-dimensional computed tomography of lungs is decomposed into surfacelet transform domain to obtain multi-scale and multi-directional sub-band information. The edge features are then enhanced by filtering sub-band coefficients using local modified Laplacian operator. Second, surfacelet inverse transform is implemented and the reconstructed image is fed back to the input of PCNN. Finally, iteration process of the PCNN is carried out to obtain final segmentation result. The proposed algorithm is validated on the samples of public dataset. The experimental results demonstrate that the proposed algorithm has superior performance over that of the three-dimensional surfacelet transform edge detection algorithm, the three-dimensional region growing algorithm, and the three-dimensional U-NET algorithm. It can effectively suppress the interference coming from lung lesions and bronchial, and obtain a complete structure of lung parenchyma.
Lung diseases such as lung cancer and COVID-19 seriously endanger human health and life safety, so early screening and diagnosis are particularly important. computed tomography (CT) technology is one of the important ways to screen lung diseases, among which lung parenchyma segmentation based on CT images is the key step in screening lung diseases, and high-quality lung parenchyma segmentation can effectively improve the level of early diagnosis and treatment of lung diseases. Automatic, fast and accurate segmentation of lung parenchyma based on CT images can effectively compensate for the shortcomings of low efficiency and strong subjectivity of manual segmentation, and has become one of the research hotspots in this field. In this paper, the research progress in lung parenchyma segmentation is reviewed based on the related literatures published at domestic and abroad in recent years. The traditional machine learning methods and deep learning methods are compared and analyzed, and the research progress of improving the network structure of deep learning model is emphatically introduced. Some unsolved problems in lung parenchyma segmentation were discussed, and the development prospect was prospected, providing reference for researchers in related fields.
[Abstract]Automatic and accurate segmentation of lung parenchyma is essential for assisted diagnosis of lung cancer. In recent years, researchers in the field of deep learning have proposed a number of improved lung parenchyma segmentation methods based on U-Net. However, the existing segmentation methods ignore the complementary fusion of semantic information in the feature map between different layers and fail to distinguish the importance of different spaces and channels in the feature map. To solve this problem, this paper proposes the double scale parallel attention (DSPA) network (DSPA-Net) architecture, and introduces the DSPA module and the atrous spatial pyramid pooling (ASPP) module in the “encoder-decoder” structure. Among them, the DSPA module aggregates the semantic information of feature maps of different levels while obtaining accurate space and channel information of feature map with the help of cooperative attention (CA). The ASPP module uses multiple parallel convolution kernels with different void rates to obtain feature maps containing multi-scale information under different receptive fields. The two modules address multi-scale information processing in feature maps of different levels and in feature maps of the same level, respectively. We conducted experimental verification on the Kaggle competition dataset. The experimental results prove that the network architecture has obvious advantages compared with the current mainstream segmentation network. The values of dice similarity coefficient (DSC) and intersection on union (IoU) reached 0.972 ± 0.002 and 0.945 ± 0.004, respectively. This paper achieves automatic and accurate segmentation of lung parenchyma and provides a reference for the application of attentional mechanisms and multi-scale information in the field of lung parenchyma segmentation.
Precise segmentation of lung field is a crucial step in chest radiographic computer-aided diagnosis system. With the development of deep learning, fully convolutional network based models for lung field segmentation have achieved great effect but are poor at accurate identification of the boundary and preserving lung field consistency. To solve this problem, this paper proposed a lung segmentation algorithm based on non-local attention and multi-task learning. Firstly, an encoder-decoder convolutional network based on residual connection was used to extract multi-scale context and predict the boundary of lung. Secondly, a non-local attention mechanism to capture the long-range dependencies between pixels in the boundary regions and global context was proposed to enrich feature of inconsistent region. Thirdly, a multi-task learning to predict lung field based on the enriched feature was conducted. Finally, experiments to evaluate this algorithm were performed on JSRT and Montgomery dataset. The maximum improvement of Dice coefficient and accuracy were 1.99% and 2.27%, respectively, comparing with other representative algorithms. Results show that by enhancing the attention of boundary, this algorithm can improve the accuracy and reduce false segmentation.