Objective To review the research progress of exosomes (EXOs) derived from different cells in the treatment of osteoporosis (OP). Methods Recent relevant literature about EXOs for OP therapy was extensively reviewed. And the related mechanism and clinical application prospect of EXOs derived from different cells in OP therapy were summarized and analyzed. Results EXOs derived from various cells, including bone marrow mesenchymal stem cells, osteoblasts, osteoclasts, osteocytes, and endothelial cells, et al, can participate in many links in the process of bone remodeling, and their mechanisms involve the regulation of proliferation and differentiation of bone-related cells, the promotion of vascular regeneration and immune regulation, and the suppression of inflammatory reactions. A variety of bioactive substances contained in EXOs are the basis of regulating the process of bone remodeling, and the combination of genetic engineering technology and EXOs-based drug delivery can further improve the therapeutic effect of OP. Conclusion EXOs derived from different cells have great therapeutic effects on OP, and have the advantages of low immunogenicity, high stability, strong targeting ability, and easy storage. EXOs has broad clinical application prospects and is expected to become a new strategy for OP treatment.
ObjectiveTo explore the nature of micromovement and the biomechanical staging of fracture healing.MethodsThrough literature review and theoretical analysis, the difference in micromovement research was taken as the breakthrough point to try to provide a new understanding of the role of micromovement and the mechanical working mode in the process of fracture healing.ResultsThe process of fracture healing is the process of callus generation and connection. The micromovement is the key to start the growth of callus, and the total amount of callus should be matched with the size of the fracture space. The strain at the fracture end is the key to determine the callus connection. The strain that can be tolerated by different tissues in the fracture healing process will limit the micromovement. According to this, the fracture healing process can be divided into the initiation period, perfusion period, contradiction period, connection period, and physiological period, i.e., the biomechanical staging of fracture healing.ConclusionBiomechanical staging of fracture healing incorporates important mechanical parameters affecting fracture healing and introduces the concepts of time and space, which helps to understand the role of biomechanics, and its significance needs further clinical test and exploration.
Objective To investigate the effectiveness of one-stage closed reduction and elastic compression fixation with double Kirschner wires for Wehbe-Schneider types ⅠB and ⅡB bony mallet fingers. Methods Between May 2017 and June 2020, 21 patients with Wehbe-Schneider type ⅠB and ⅡB bony mallet fingers were treated with one-stage closed reduction and elastic compression fixation using double Kirschner wires. There were 15 males and 6 females with an average age of 39.2 years (range, 19-62 years). The causes of injury were sports injury in 9 cases, puncture injury in 7 cases, and sprain in 5 cases. The time from injury to admission was 5-72 hours (mean, 21.0 hours). There were 2 cases of index finger injury, 8 cases of middle finger injury, 9 cases of ring finger injury, and 2 cases of little finger injury. The angle of active dorsiflexion loss of distal interphalangeal joint (DIPJ) was (40.04±4.02)°. According to the Wehbe-Schneider classification standard, there were 10 cases of typeⅠB and 11 cases of type ⅡB. The Kirschner wire was removed at 6 weeks after operation when X-ray film reexamination showed bony union of the avulsion fracture, and the functional exercise of the affected finger was started. Results The operation time was 35-55 minutes (mean, 43.9 minutes). The length of hospital stay was 2-5 days (mean, 3.4 days). No postoperative complications occurred. All patients were followed up 6-12 months (mean, 8.8 months). X-ray films reexamination showed that all avulsion fractures achieved bony union after 4-6 weeks (mean, 5.3 weeks). Kirschner wire was removed at 6 weeks after operation. After Kirschner removal, the visual analogue scale (VAS) score of pain during active flexion of the DIPJ was 1-3 (mean, 1.6); the VAS score of pain was 2-5 (mean, 3.1) when the DIPJ was passively flexed to the maximum range of motion. The angle of active dorsiflexion loss of affected finger was (2.14±2.54)°, showing significant difference when compared with preoperative angle (t=52.186, P<0.001). There was no significant difference in the active flexion angle between the affected finger (79.52±6.31)° and the corresponding healthy finger (81.90±5.36)° (t=1.319, P=0.195). At 6 months after operation, according to Crawford functional evaluation criteria, the effectiveness was rated as excellent in 11 cases, good in 9, and fair in 1, with an excellent and good rate of 95.24%. Conclusion For Wehbe-Schneider typesⅠB and ⅡB bony mallet fingers, one-stage closed reduction and elastic compression fixation with double Kirschner wires can effectively correct the deformity and has the advantages of simple surgery, no incision, and no influence on the appearance of the affected finger.
ObjectiveTo compare the clinical and radiologic effectiveness in patients with versus without lateral hinge fracture during medial opening-wedge high tibial osteotomy (MOWHTO) to evaluate the effect of lateral hinge fracture on short-term effectiveness.MethodsThe clinical data of 84 patients (97 knees) with medial compartment osteoarthritis who treated with MOWHTO between September 2015 and July 2018 was retrospectively analyzed. There were 10 males (10 knees) and 74 females (87 knees). The age ranged from 45 to 65 years with an average of 57.7 years. Lateral hinge fracture was recognized by the intraoperative fluoroscopy or immediate postoperative X-ray film. Fractures were classified into types Ⅰ, Ⅱ, and Ⅲ according to the Takeuchi classification. The healing of osteotomy was observed by radiographs during follow-up; the femur tibia angle (FTA), medialproximal tibial angle (MPTA), and hip-knee-ankle angle (HKA) were also calculated. The knee joint function was evaluated by Hospital for Special Surgery (HSS) score and knee society score (KSS).ResultsThe incision healed by first intention. All patients were followed up 15-48 months with an average of 24.8 months. No hinge fracture occurred in 78 knees (80.41%, group A), and lateral hinge fractures were observed in 19 knees (19.59%, group B) and were divided into the type Ⅰ (13 knees, 13.40%) and type Ⅲ (6 knees, 6.19%) groups. Type Ⅰ fractures were not additionally treated, type Ⅲ fractures were anatomic reduced fixed with additional lag screws. X-ray film and CT examination showed that all patients had bone healing at 3 months after operation without delayed healing or nonunion. During follow-up, there was no loosening or fracture of internal fixation plates and screws. HKA, FTA, and MPTA of patients in group A and group B (type Ⅰ and Ⅲ) were significantly improved at each time point after operation compared with preoperative values (P<0.05); there was no significant difference between groups at each time point before and after operation (P>0.05). After operation, the pain of knee joint was alleviated and the function of joint was improved. At last follow-up, KSS score and HSS score of groups A and B were significantly improved compared with those before operation (P<0.05), but there was no significant difference between the two groups (P>0.05).ConclusionThe lateral hinge fracture may occur during MOWHTO. As long as the treatment and rehabilitation were guided according to the fracture classification of the hinge, the effectiveness can be similar to those without the hinge fracture.
ObjectiveTo prepare a bone tissue engineering scaffold for repairing the skull defect of Sprague Dawley (SD) rats by combining exogenous transforming growth factor β1 (TGF-β1) with gelatin methacryloyl (GelMA) hydrogel.MethodsFirstly, GelMA hydrogel composite scaffolds containing exogenous TGF-β1 at concentrations of 0, 150, 300, 600, 900, and 1 200 ng/mL (set to groups A, B, C, D, E, and F, respectively) were prepared. Cell counting kit 8 (CCK-8) method was used to detect the effect of composite scaffold on the proliferation of bone marrow mesenchymal stem cells (BMSCs) in SD rats. ALP staining, alizarin red staining, osteocalcin (OCN) immunofluorescence staining, and Western blot were used to explore the effect of scaffolds on osteogenic differentiation of BMSCs, and the optimal concentration of TGF-β1/GelMA scaffold was selected. Thirty-six 8-week-old SD rats were taken to prepare a 5 mm diameter skull bone defect model and randomly divided into 3 groups, namely the control group, the GelMA group, and the GelMA+TGF-β1 group (using the optimal concentration of TGF-β1/GelMA scaffold). The rats were sacrificed at 4 and 8 weeks after operation, and micro-CT, HE staining, and OCN immunohistochemistry staining were performed to observe the repair effect of skull defects.ResultsThe CCK-8 method showed that the TGF-β1/GelMA scaffolds in each group had a promoting effect on the proliferation of BMSCs. Group D had the strongest effect, and the cell activity was significantly higher than that of the other groups (P<0.05). The results of ALP staining, alizarin red staining, OCN immunofluorescence staining, and Western blot showed that the percentage of ALP positive area, the percentage of alizarin red positive area, and the relative expressions of ALP and OCN proteins in group D were significantly higher than those of the other groups (P<0.05), the osteogenesis effect in group D was the strongest. Therefore, in vitro experiments screened out the optimal concentration of TGF-β1/GelMA scaffold to be 600 ng/mL. Micro-CT, HE staining, and OCN immunohistochemistry staining of rat skull defect repair experiments showed that the new bone tissue and bone volume/tissue volume ratio in the TGF-β1+GelMA group were significantly higher than those in the GelMA group and control group at 4 and 8 weeks after operation (P<0.05).ConclusionThe TGF-β1/GelMA scaffold with a concentration of 600 ng/mL can significantly promote the osteogenic differentiation of BMSCs, can significantly promote bone regeneration at the skull defect, and can be used as a bioactive material for bone tissue regeneration.
Objective To investigate the effect of solid lipid nanoparticles (SLNs) on enhancing the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro by resveratrol (Res), and provide a method for the treatment of bone homeostasis disorders. MethodsRes-SLNs were prepared by high-temperature emulsification and low-temperature solidification method, and then the 2nd-3rd generation BMSCs from Sprague Dawley rat were co-cultured with different concentrations (0, 0.1, 1, 5, 10, 20 μmol/L) of Res and Res-SLNs. The effects of Res and Res-SLNs on the cell viability of BMSCs were detected by cell counting kit 8 (CCK-8) and live/dead cell staining; the effects of Res and Res-SLNs on the osteogenic differentiation of BMSCs were detected by alkaline phosphatase (ALP) staining and alizarin red S (ARS) staining after osteogenic differentiation induction, and the optimal concentration of Res-SLNs for gene detection was determined. Anti-osteocalcin (OCN) immunofluorescence staining and real-time fluorescent quantitative PCR (RT-qPCR) were used to detect the effect of Res and Res-SLNs on osteoblast-related genes (ALP and OCN) of BMSCs. ResultsLive/dead cell staining showed that there was no significant difference in the number of dead cells between Res and Res-SLNs groups; CCK-8 detection showed that the activity of BMSCs in Res group was significantly reduced at the concentration of 20 μmol/L (P<0.05), while Res-SLNs activity was not affected by Res concentration (P>0.05). After osteogenic differentiation, the staining intensity of ALP and ARS in both groups was dose-dependent. The percentage of ALP positive staining area and the percentage of mineralized nodule area in Res group and Res-SLNs group reached the maximum at the concentrations of 10 μmol/L and 1 μmol/L, respectively (P<0.05), and then decreased gradually; the most effective concentration of Res-SLNs was 1 μmol/L. The expression of OCN and the relative expression of ALP and OCN mRNA in Res-SLNs group were significantly higher than those in Res group (P<0.05). ConclusionEncapsulation of SLNs can improve the effect of Res on promoting osteogenesis, and achieve the best effect of osteogenic differentiation of BMSCs at a lower concentration, which is expected to be used in the treatment of bone homeostasis imbalance diseases.
ObjectiveTo investigate the effectiveness of modified tibial transverse bone transport technique combined with vancomycin calcium phosphate bone cement local filling and covering in the treatment of diabetic foot (DF). MethodsThe clinical data of 22 DF patients treated with modified tibial transverse bone transport technique combined with vancomycin calcium phosphate bone cement local filling and covering between October 2019 and December 2021 were retrospectively analyzed. There were 13 males and 9 females with an average age of 61.3 years (range, 41-74 years). The duration of diabetes mellitus was 8-30 years, with an average of 12.5 years, and the duration of DF was 10-42 days, with an average of 28.2 days. There were 2 cases of grade 3 and 20 cases of grade 4 according to Wagner classification. CT angiography was performed on both lower extremities of the patients, and the blood vessels of the affected extremities were narrowed to varying degrees and the blood supply was poor. The preoperative skin temperature of affected foot was (28.27±0.91)°C, the ankle brachial index (ABI) was 0.42±0.11, and the visual analogue scale (VAS) score was 7.7±0.6. Preoperative size of DF ulcer ranged from 2.5 cm×2.0 cm to 3.5 cm×3.0 cm. The skin temperature of affected foot, ABI, VAS score, and skin wound healing of the affected foot were recorded and compared between before operation and at 3 months after operation. ResultsAll patients were followed up 3-18 months, with an average of 10.5 months. The infection of 1 patient with Wagner grade 4 did not improve significantly after operation, and there was a trend of further deterioration, and the amputation of the left leg was finally performed at 22 days after operation.The remaining 21 patients recovered well after operation, the external fixator was removed at 1 month after operation, the wound healed at 3 months after operation, and there was no recurrence of ulcer in situ or other sites during follow-up. At 3 months after operation, the skin temperature of affected foot was (31.76±0.34)°C, the ABI was 0.94±0.08, and the VAS score was 2.1±0.3, which significantly improved when compared with those before operation (t=25.060, P<0.001; t=32.412, P<0.001; t=–51.746, P<0.001). ConclusionModified tibial transverse bone transport technique combined with vancomycin calcium phosphate bone cement local filling and covering for DF patients can effectively improve the blood supply of the affected limb, promote wound healing, and improve effectiveness.
Objective To investigate the effect of ultrasonic bone curette in anterior cervical spine surgery. MethodsA clinical data of 63 patients with cervical spondylosis who were admitted between September 2019 and June 2021 and met the selection criteria was retrospectively analyzed. Among them, 32 cases were operated with conventional instruments (group A) and 31 cases with ultrasonic bone curette (group B). There was no significant difference between the two groups (P>0.05) in gender, age, surgical procedure, surgical segment and number of occupied cervical space, disease type and duration, comorbidities, and preoperative Japanese Orthopaedic Association (JOA) score, cervical dysfunction index (NDI), and pain visual analogue scale (VAS) score. The operation time, intraoperative bleeding, postoperative drainage, postoperative hospital stay, and the occurrence of postoperative complications were recorded in both groups. Before operation and at 1, 3, and 6 months after operation, the JOA score and NDI were used to evaluate the function and the postoperative JOA improvement rate was calculated, and VAS score was used to evaluate the pain improvement. The anteroposterior and lateral cervical X-ray films were taken at 1, 3, and 6 months after operation to observe whether there was any significant loosening and displacement of internal fixators. ResultsCompared with group A, group B had shorter operation time and postoperative hospital stay, less intraoperative bleeding and postoperative drainage, and the differences were significant (P<0.05). All incisions healed by first intention in the two groups, and postoperative complications occurred in 5 cases (15.6%) in group A and 2 cases (6.5%) in group B, showing no significant difference (P>0.05). All patients were followed up 6-12 months (mean, 7.9 months). The JOA score and improvement rate gradually increased in groups A and B after operation, while the VAS score and NDI gradually decreased. There was no significant difference in VAS score between 3 months and 1 month in group B (P>0.05), and there were significant differences between the other time points of each indicator in the two groups (P<0.05). At 1, 3, and 6 months after operation, the JOA score and improvement rate in group B were better than those in group A (P<0.05). X-ray films examination showed that there was no screw loosening or titanium plate displacement in the two groups after operation, and the intervertebral cage or titanium mesh significantly sank. ConclusionCompared with traditional instruments, the use of ultrasonic bone curette assisted osteotomy in anterior cervical spine surgery has the advantages of shorter operation time, less intraoperative bleeding, less postoperative drainage, and shorter hospital stay.
Objective To review the application and research progress of artificial intelligence (AI) technology in trauma treatment. MethodsThe recent research literature on the application of AI and related technologies in trauma treatment was reviewed and summarized in terms of prehospital assistance, in-hospital emergency care, and post-traumatic stress disorder risk regression prediction, meanwhile, the development trend of AI technology in trauma treatment were outlooked. Results The AI technology can rapidly analyze and manage large amount of clinical data to help doctors identify patients’ situation of trauma and predict the risk of possible complications more accurately. The application of AI technology in surgical assistance and robotic operations can achieve precise surgical plan and treatment, reduce surgical risks, and shorten the operation time, so as to improve the efficiency and long-term effectiveness of the trauma treatment. ConclusionThere is a promising future for the application of AI technology in the trauma treatment. However, it is still in the stage of exploration and development, and there are many difficulties of historical data bias, application condition limitations, as well as ethical and moral issues need to be solved.
ObjectiveTo investigate the early effectiveness of the Ti-Robot assisted femoral neck system (FNS) in the treatment of elderly Garden type Ⅱ and Ⅲ femoral neck fractures. Methods A retrospective analysis was conducted on the clinical data of 41 elderly patients with Garden type Ⅱ and Ⅲ femoral neck fractures who were admitted between December 2019 and August 2022 and met the selection criteria. Among them, 21 cases were treated with Ti-Robot assisted FNS internal fixation (study group), and 20 cases were treated solely with FNS internal fixation (control group). There was no significant difference in baseline data, including gender, age, side, cause of injury, time from injury to surgery, fracture Garden classification, and fracture line classification, between the two groups (P>0.05). Surgical effectiveness was evaluated based on parameters such as operation time (including incision time and total operation time), reduction level, number of dominant pin insertions, intraoperative fluoroscopy frequency, incision length, whether to extend the incision, need for assisted reduction, postoperative hospital stay, fracture healing time, incidence of osteonecrosis of the femoral head, postoperative visual analogue scale (VAS) score at 1 day, and Harris hip score at last follow-up. Results The study group showed significantly shorter incision time, fewer dominant pin insertions, fewer instances of extended incisions, fewer intraoperative fluoroscopy frequency, and smaller incisions than the control group (P<0.05). There was no significant difference in total operation time, reduction level, and assisted reduction frequency between the two groups (P>0.05). Both groups achieved primary wound healing postoperatively, with no complications such as incision leakage or skin infection. All patients were followed up 12-24 months with an average of 14.6 months. Fractures healed in both groups, with no significant difference in healing time (P>0.05). There was no significant difference in postoperative hospital stay between the two groups (P>0.05). The study group showed significantly better VAS score at 1 day after operation and Harris hip score at last follow-up when compared to the control group (P<0.05). No complication such as internal fixation failure, fracture displacement, or hip joint varus occurred in both groups during the follow-up. Osteonecrosis of the femoral head occurred in 1 patient of the control group, while no was observed in the study group, and the difference in the incidence of osteonecrosis of the femoral head between the two groups was not significant (P=0.488).Conclusion Compared to sole FNS internal fixation treatment, Ti-Robot assisted FNS internal fixation for elderly Garden typeⅡ and Ⅲ femoral neck fractures can reduce incision time, achieve minimally invasive and accurate nail implantation, and decrease intraoperative fluoroscopy frequency, leading to improved postoperative hip joint function recovery.