west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Glycogen" 5 results
  • Relationship Between Hepatocellular Apoptosis and Glycogen Contents During Hepatic Cold PreservationReperfusion and Its Mechanism

    ObjectiveTo study the relationship between hepatocellular apoptosis and glycogen contents during hepatic cold preservationreperfusion and its mechanism.MethodsBased on the model of four groups of rabbit livers with different hepatocellular glycogen contents, hepatocellular apoptosis and bax gene expression were observed during hepatic cold preservationreperfusion.ResultsApoptotic hepatocytes were obviously found in 60 minute reperfusing livers subsequent to 9 hour cold storage, and there was significant difference in the numbers of apoptotic hepatocytes among all the groups. In the same time, there was the close relationship between the levels of bax gene expression and the glycogen contents of hepatocytes.ConclusionIntracellular abundant glycogen may significantly depress the hepatocellular apoptosis during hepatic cold preservationreperfusion by decreasing hepatocellular bax gene expression.

    Release date:2016-08-28 04:49 Export PDF Favorites Scan
  • EFFECT OF INTRACELLULAR GLYCOGEN ON LIVER ISCHEMIA-REPERFUSION AND ITS MECHANISM

    To investigate the effect of intracellular glycogen on liver ischemia-reperfusion and its mechanism, histomorphological and enzymological changes, histic ATP contents, the activity of Ca2+-ATPase on cytoplasmic membrane and intracellular free Ca2+concentration were observed during the ischemia-reperfusion of three groups of rabbit livers with different glycogen content. We found that the more vigorous energy metabolism, the higher activity of Ca2+-ATPase, the lower concentration of intracellular free Ca2+ and the slighter injury of histic structure and function appeared in the liver with the more abundant glycogen. The results suggest that intracellular abundant glycogen may reduce liver ischemiareperfusion injury.

    Release date:2016-08-29 09:20 Export PDF Favorites Scan
  • MicroRNA-129 Promotes Cardiomyogenesis in Bone Marrow Mesenchymal Stem Cells

    Objective To explore the induction of cardiomyogenesis of microRNA-129 (mir-129) in rat bone marrowmesenchymal stem cells (BM-MSCs) and its mechanism. Methods BM-MSCs were isolated from Sprague-Dawley rats and cultured in vitro. Overexpression of mir-129 or both mir-129 and glycogen synthase kinase-3β (GSK-3β) in BM-MSCs was produced with a lentiviral vector system. All the BM-MSCs were divided into four groups: control group (MSCs),Lentiviral vectors+MSCs group (Lv-MSCs),mir-129 transfection group (mir-129-MSCs),and mir-129+GSK-3βdouble transfection group (mir-129+GSK-3β-MSCs). Five-Azacytidine (5-Aza) (10 μmol/L) was used to induce BM-MSCsdifferentiation into cardiomyocytes. On the 1st,5 th,10 th,15 th and 20 th day after induction,realtime-PCR was performedto detect mRNA levels of GATA-4,Nkx2.5 and MEF-2C. On the 10 th,15 th and 20 th day after induction,Western blottingwas performed to examine expression levels of cTnI,Desmin,GSK-3β,phosphorylated β-catenin and dephosphorylated β-catenin. Results Compared with the control group,at respective time points,mRNA levels of cardiomyogenic genes and expression levels of cardiomyocyte-related proteins of mir-129 transfection group were significantly elevated,theexpression level of GSK-3β was significantly decreased,and the ratio of dephosphorylated/phosphorylated β-catenin was significantly elevated. When both mir-129 and GSK-3β were overexpressed in BM-MSCs,mRNA levels of cardiomyogenicgenes and expression levels of cardiomyocyte-related proteins were significantly lower than those of mir-129 transfection group,and the ratio of dephosphorylated/phosphorylated β-catenin was significantly decreased. Conclusion Overexpression of mir-129 can promote cardiomyogenesis of rat BM-MSCs possibly via inhibiting GSK-3β production and thus decreasing the inhibition of phosphorylation of β-catenin which then enters the nucleus and activates downstream signaling pathways that regulate cardiomyogenic differentiation of BM-MSCs.

    Release date:2016-08-30 05:47 Export PDF Favorites Scan
  • ADVANCEMENT OF CYTOSKELETON AND AXON OUTGROWTH OF NEURON

    Object ive To summa r i z e the advanc ement of cytoske l e ton and axon outgrowth of neuron. Methods The recent l iterature concerning cytoskeleton and axon outgrowth of neuron was reviewed and summarized. Results The actin filaments and microtubules in neuron were highly polarized and dynamic structures confined to the ti ps of axons and the reci procal interactions between these two major cytoskeletal polymers was also dynamic. Attractive or a repulsive cue whose final common path of action was the growth cone cytoskeleton mediated the growth of axons of neuron by intracellular signaling cascades. Regulating the actin filament and microtubule dynamics as well as their interactions in growth cones played a key role in neurite outgrowth and axon guidance. Rho-GTPases and glycogen synthase kinase 3β (GSK-3β), the two major intracellular signal ing pathways had emerged in recent years as candidates for regulating the dynamics of actin filaments and microtubules. Conclusion The axon outgrowth and guidance depend on well-coordinated cytoskeletal and reciprocal interaction dynamics which also mediate axon regeneration after spinal cord injury. Regulating activity of Rho-GTPases and GSK- 3β simultaneously may acts as key role to regulate the dynamics of cytoskeletal and to determine axon outgrowth.

    Release date:2016-08-31 05:48 Export PDF Favorites Scan
  • Ghrelin Enhances The Sensitivity of Insulin in L6 Rat Skeletal Muscle Via PI3K/Akt/GSK-3βSignaling Pathway

    ObjectiveTo study the effects of Ghrelin for glucose metabolism and insulin sensitivity of L6 rat myoblasts in palmitic acid induced, and to explore its possible mechanisms. MethodsThe L6 rat myoblasts were cultured until differentiation, then using palmitic acid(0.3 mmol/L) for 16 hours. The experimental group was treated with different doses of Ghrelin(1, 10, and 100 nmol/L) for 8 hours, then the glucose uptake was detected by using glucose oxidase peroxidase method(GOD-POD), the cell membrane glucose transporter 4(GLUT-4) protein staining was observated under confocal microscopy, and the expressions of total protein kinase B(Akt), phosphorylated protein kinase B(pAkt), total glycogen synthase kinase-3β(GSK-3β), and phosphorylated glycogen synthase kinase-3β(pGSK-3β) were detected by using immunoblotting(Western blot). ResultsGhrelin enhanced the glucose uptake of L6 rat myoblasts with insulin resistance, the cell membrane Glut-4 stain was deepen, the expressions of pAkt and pGSK-3βprotein increased, and this effect could be PI3K blocker(LY294002) eliminated. ConclusionGhrelin promotes the glucose uptake of L6 rat myoblasts through PI3K/Akt/GSK-3βsignaling pathway, so as to improve the sensitivity of insulin in L6 rats muscle cells.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content