Intravitreal injections of anti-vascular endothelial growth factor (anti-VEGF) drugs, including monoclonal antibodies (such as bevacizumab and ranibizumab) and fusion protein agents (such as aflibercept and conbercept) have been proven to be effective in the treatment of wet age-related macular degeneration (wAMD). However, there are still some patients with poor efficacy, such as no response to initial treatment or poor response, and even relapse during the course of treatment. In view of the different targets and molecular characteristics of anti-VEGF drugs, the switch of anti-VEGF drugs and the adjustment of delivery pattern, dosages and intervals have been the strategies to cope with the poor efficacy in clinic. However, there are some differences in the results of current studies. Overall, the recovery of retinal anatomical outcome achieves more benefits, and it is relatively difficult to improve visual acuity. To determine which regimen would get the biggest benefits, a large number of randomized controlled clinical trials and long study period will be needed.
Accurate collection and preservation of vitreous and retina-related tissue specimens is the basis for clinical diagnosis and rigorous basic research. The clinical uses of vitreous specimens include microbial culture, cytological detection, detection of degenerative diseases, PCR analysis, and cytological detection of cell morphology. The experimental research uses include DNA gene analysis, protein quantitative analysis, metabolite examination, RNA content quantitative analysis, cytokine determination and so on. Retinal specimens collecting was mainly used for PCR analysis of retinal proliferative membrane, immunohistochemical staining, immunofluorescence examination, microvascular density evaluation, cell isolation and culture, etc. Understanding the collection of vitreoretinal surgical specimens and the application of relevant detection techniques and materials can provide a more comprehensive idea for the diagnosis of vitreoretinal diseases and a broader reference for the related basic research.
Proliferative diabetic retinopathy is a serious complication of diabetes in the eye. In recent years, with the development of surgical equipment and fundus examination technology, surgical treatment based on vitrectomy has made more new progress in indications, combined application and surgical evaluation. Surgical evaluation based on imaging can continuously monitor patients' eye conditions before, during and after surgery, and clinicians can choose different surgical plans and timing for different patients, which can help reduce patients' pain and achieve better visual outcomes.
ObjectiveTo observe RNA-Seq analysis of gene expression profiling in human retinal vascular endothelial cells after anti-vascular endothecial growth factor (VEGF) treatment.MethodsCultured the retinal vascular endothelial cells in vitro and logarithmic growth phase cells were used for experiments. The cells were divided into VEGF group and VEGF combined with anti-VEGF drugs group. The VEGF group cells were treated with 50 ng/ml VEGF for 72 h to simulate the high VEGF survival conditions of vascular endothelial cells in diabetic retinopathy. VEGF combined with anti-VEGF drug group cells was treated with 50 ng/ml VEGF and 2.5 μg/ml anti-VEGF drugs for 72 h to imitate the microenvironment of cells following the anti-VEGF drugs treatment, and whole transcriptome sequencing approach was applied to the above two groups of cells through RNA-Seq. Now with biological big data obtained as a basis, to analyze the differentially expressed genes (DEGs). And through enrichment analysis to explain the differential functions of DEGs and their signal pathways.ResultsThe gene expression profiles of the two groups of cells were obtained. Through analysis, 328 DEGs were found, including 194 upregulated and 133 downregulated ones. The functions of DEGs were influenced by regulations over molecular biological process, cellular energy metabolism and protein synthesis, etc. Among these genes, SI,PRX and HPGD were related to protein synthesis, BIRCT to cellular apoptosis, and ABLIM1 and CRB2 to retinal development, and ABCG1, ABCA9 and ABCA12 were associated with the cholesterol of macrophage and the transfer of phospholipid. GO enrichment analysis showed that DEGs mainly act in three ways: regulating biological behavior, organizing cellular component and performing molecular function. Pathway enrichment analysis showed that gene expressions of the two cell groups were differentiated in ECM receptor pathway, and Notch, mitogen-activated protein kinase, transforming growth factor (TGF)-β and Wnt signal pathways. Among them, the gene expression in TGF-β signal pathway attracts most attention, where the DEGs, such as CAMK2B, COL3A1, CYGB, PTGER2 and HS6ST2, among others, were closely related to fibrosis process.ConclusionThe anti-VEGF drugs may enhance the expression of CAMK2B, COL3A1, CYGB, PTGER2 and others genes related to TGF-β signal pathway and aggravate retinal fibrosis disease.
ObjectiveTo construct the connective tissue growth factor (CTGF) recombinant interference vector (shRNA) and observe its inhibitory effect on the expression of endogenous CTGF in retinal vascular endothelial cells. Methods The human CTGF shRNA was constructed and the high-titer CTGF shRNA lentivirus particles was acquired via three-plasmid lentivirus packaging system to infect retinal vascular endothelial cells. The optimal multiplicity and onset time of lentivirus infection were identified by tracing down the red florescent protein in interference vector. The cells were classified into three groups: blank control group, infection control group and CTGF knockdown group. The differences in cells migrating ability was observed through Transwell allay. The mRNA and protein expression of CTGF, fibronectin, α-smooth muscle actin (α-SMA) and collagen Ⅰ (Col Ⅰ) were quantified through real-time PCR testing and Western blot system. Data between the three groups were examined via one-way analysis of variance. ResultsThe result showed that an optimal multiplicity of 20 and onset time of 72 hours were the requirements to optimize lentivirus infection. Transwell allay result showed a contrast in the number of migrated cells in the CTGF knockdown group and that in the blank control group and infection control group (F=20.64, P=0.002). Real-time PCR testing showed a contrast in related gene expression (CTGF, fibronectin, α-SMA and Col Ⅰ) in the CTGF knocked-down group and that in the blank control group and infection control group (F=128.83, 124.44, 144.76, 1 374.44; P=0.000, 0.000, 0.000, 0.000). Western blot system showed the statistical significance of the contrasted number of related protein expression (CTGF, fibronectin, α-SMA and Col Ⅰ) in the knockdown group and that in the blank control group (F=22.55, 41.60, 25.73, 161.68; P=0.002, 0.000, 0.001, 0.000). ConclusionThe success in producing CTGF shRNA lentivirus particle suggests that CTGF shRNA lentivirus can effectively knock down CTGF expression.
ObjectiveTo observe the changes in refractive status of eyes with idiopathic macular hole (IMH) after vitrectomy and phacoemulsification and IOL implantation (combined surgery).MethodsA retrospective clinical study. From January 2016 to June 2019, 51patients (56 eyes) of IMH who underwent combined surgery at the Tianjin Medical University Eye Hospital. were included in the study. Among them, there were 17 males and 34 females with the average age of 66.79±4.33 years. All the affected eyes underwent BCVA, retinoscopy and axial length (AL) measurement. The IOL power was calculated according to the SRK-T formula and the refractive power (predicted value) was predicted. The average BCVA of the affected eye was 0.20±0.13. The average anterior chamber depth was 2.89±0.28 mm. The average △corneal astigmatism was 0.73±0.43 D, the average AL was 22.92±0.70 mm, the average predicted refractive power was 0.10±0.66 D. All the affected eyes underwent standard transciliary flat part three-channel 25G combined surgery. Six months after the operation, the actual value (actual value) of the diopter after the operation was measured with the same equipment and method before the operation. Paired t test was used to compare the difference between the predicted value and the actual value.ResultsSix months after the operation, the actual value of the refractive power was -0.19±0.64 D. Compared with the pre-operative refractive power, the difference was not statistically significant (t=1.665, P=0.102). The difference between the actual value and the predicted value was -0.33±0.81 D.ConclusionsThe refractive status of the IMH eye undergoes myopia drift after combined surgery. The preoperative IOL power budget can be appropriately reserved for +0.3 D hyperopia.
Objective To observe the effect of polypyramidine tract binding protein-associated splicing factor (PSF) on hydrogen peroxide (H2O2) induced apoptosis of retinal pigment epithelial (RPE) cells in vitro. Methods RPE cells were cultured and divided into a normal group, normal+H2O2 group, Vec+H2O2group, PSF+H2O2 group according to the experimental design. Overexpression of PSF in RPE cells were achieved by pEGFP-PSF plasmid transient transfection into RPE cells, then RPE cells were exposed to H2O2. The morphological changes were observed by hematoxylin-eosin (HE) staining and Live/Dead staining while the survival rate of cells was detected by MTT assay. The effect of PSF on H2O2-induced RPE apoptosis was analyzed by Cell Death Detection ELISA kit. Meanwhile, intracellular reactive oxygen species (ROS) level was detected by using DCFH-DA method. Results Overexpression of PSF could effectively alleviate the morphological changes induced by H2O2 stimulation shown by HE staining, and effectively reduce dead cells number shown by Live/Dead staining. After H2O2 stimulation, the survival rate, apoptosis rate and ROS production level in PSF overexpression group were 0.68±0.12, 0.44±0.08 and 18 616±3 382.54 respectively, showing significant difference in comparison with the vector plasmid group and normal group (P<0.05). Conclusion PSF overexpression plays a protective role in H2O2-induced apoptosis by inhibiting the production of ROS in RPE cells.
ObjectiveTo observe the effect of polypyramidine tract binding protein-associated splicing factor (PSF) towards advanced glycation end products (AGEs) induced the apoptosis of Müller cells in vitro.MethodsExperimental study. Müller cells were cultured and divided into groups according to the project design, plasmid enhanced green fluorescent protein-PSF were transfected into the cells to achieve the overexpression of PSF Müller cells in vitro, then cells were exposed to AGEs and the Morphological changes were observed by HE staining and Hoechst 33258 staining while the survival rate of cells were detected by MTT assay. The effects of PSF on AGEs-induced Müller apoptosis was measured by Cell Death Detection ELISA kit. Meanwhile, 2′,7′-dichlorofluorescin diacetate staining was performed to monitor the protective effects of PSF on AGEs-induced Müller cells ROS.ResultsThe morphology of cells in normal group was full and the cytoplasm staining was uniform. In N+AGEs group and Vec+AGEs group, cell volume decreased, cytoplasm was dense and concentrated, and eosinophilic staining was enhanced. The cell morphology of PSF+AGEs group was still full, with uniform cytoplasm staining and uniform nucleus staining. The viability of N+AGEs group, Vec+AGEs group and PSF+AGEs group were 0.42±0.11, 0.35±0.12 and 0.68±0.12. The apoptosis values were 1.08±0.16, 0.96±0.20 and 0.44±0.08. The intracellular ROS levels were 28 833.67±3 550.06, 28 356.67±4 854.81, 186 163.00±382.54. Compared with N+AGEs group and Vec+AGEs group, the cell viability of PSF+AGEs group was significantly improved (F=20.65, P=0.000), cell apoptosis value (F=43.43, P=0.000) and intracellular ROS level (F=18.86, P=0.000).ConclusionPSF overexpression play a protective role in AGEs-induced apoptosis by inhibiting the production of ROS in Müller cells.
ObjectiveTo observe the changes of follistatin-like protein 1 (FSTL1) in serum of patients with proliferative diabetic retinopathy (PDR).MethodsTwenty PDR patients confirmed by clinical examination and 20 normal people were included in the study. Human retinal vascular endothelial cells (HRCEC) were divided into HRCEC blank control group, 3 h hypoxia group, 6 h hypoxia group. Human umbilical vein endothelial cell (HUVEC) were divided into HUVEC blank control group, 3h hypoxia group, 6h hypoxia group. Real-time quantitative PCR (RT-PCR) and ELISA were used to determine the expression of FSTL1, TGF-β, VEGF, connective tissue growth factor (CTGF) mRNA and protein in peripheral blood and cells of all groups from all subjects.ResultsThe expressions of FSTL1, TGF-β1, CTGF, VEGF mRNA in blood samples of patients with PDR were 1.79±0.58, 0.97±0.21, 1.85±0.69 and 1.38±0.44. The expressions of FSTL1, TGF-β1 protein were 1.19±0.50, 0.71±0.24 ng/ml and 734.03±116.45, 649.36±44.23 ng/L. Compared with normal people, the differences were statistically significant (tmRNA=0.90, 0.21, 2.85, 1.77; P=0.00, 0.00, 0.04, 0.02. tprotein=1.88, 7.68; P=0.00, 0.02). The cell viability of HRCEC cells in the 3 h hypoxia group and the 6 h hypoxia group were 0.66±0.05 and 0.64±0.04, respectively. Compared with the blank control group, the difference was statistically significant (F=13.02, P=0.00). The cell viability of HUVEC cells in the 3 h hypoxia group and the 6 h hypoxia group were 0.63±0.06 and 0.68±0.06, respectively. Compared with the blank control group, the difference was statistically significant (F=26.52, P=0.00). Comparison of FSTL1, TGF-β1, CTGF, and VEGF mRNA expression in HRCEC blank control group and 3 h hypoxia group, the differences were statistically significant (F=14.75, 44.93, 85.54, 6.23; P=0.01, 0.00, 0.00, 0.03). Compared with the HRCEC blank control and 3 h hypoxia group, the expressions of FSTL1 and TGF-β1 protein were statistically significant (P<0.05). There was a statistically significant difference in TGF-β1 protein expression in the hypoxic 6 h group (P=0.03) and no significant difference in FSTL1 protein expression (P=0.68). Comparison of FSTL1, TGF-β1, CTGF, and VEGF mRNA expression in HUVEC blank control group and 3h hypoxia group, the differences were statistically significant (F=19.08, 25.12, 22.89, 13.07; P=0.00, 0.00, 0.00, 0.01). Immunofluorescence staining results showed that FSTL1, TGF-β1, CTGF, and VEGF proteins were positively expressed in cells in the 3h hypoxia and 6h hypoxia groups.ConclusionThe expression of FSTL1 gene and protein in serum of PDR patients was significantly higher than that of normal people.
ObjectiveTo observe the efficacy of dexamethasone intravitreal implant (DEX) combined with pars plana vitrectomy (PPV) in eyes with severe idiopathic epimacular membrane (IMEM). MethodsA prospective clinical case study. From December 2018 to May 2021, 24 patients with 25 eyes of severe IMEM diagnosed in Tianjin Medical University Eye Hospital were included in the study. Among them, 7 males had 7 eyes, 17 females had 18 eyes. Age was 57 to 84 years old. The IMEM stage was 3 to 4 examined by spectral domain optical coherence tomography (SD-OCT). All eyes were performed best corrected visual acuity (BCVA) and central macular thickness (CMT) by SD-OCT. The patients were randomly divided into PPV group (11 eyes) and PPV+DEX group (14 eyes). Standard PPV by three-channel 25G was performed. Phacoemulsification, membrane stripping and intraocular lens implantation were combined during the operation. Patients received vitreous injection of 0.7 mg DEX in PPV+DEX group at the end of the operation. At 1 week, 1 month, 3 months and 6 months after operation, the same equipments and methods were used to perform relevant examinations. The changes of BCVA and CMT were compared between the two groups by t test. ResultsCompared with before operation, at 1, 3 and 6 months after operation, the BCVA of the eyes in the PPV+DEX group was significantly improved (t=3.974, 4.639, 4.453), CMT was significantly decreased (t=2.955, 3.722, 4.364), the differences were statistically significant (P<0.05); at 3 and 6 months after surgery, the BCVA of the eyes in the PPV group was significantly improved (t=2.983, 4.436), CMT was significantly decreased (t=2.983, 3.461), the differences were statistically significant (P<0.05). ConclusionIn the treatment of severe IMEM, DEX can accelerate the early postoperative visual recovery and reduce CMT.