west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Motor imagery" 7 results
  • Investigation of brain computer interface combined with wrist passive motion training in chronic stroke patients

    ObjectiveTo investigate the feasibility and effectiveness of motor imagery based brain computer interface with wrist passive movement in chronic stroke patients with wrist extension impairment.MethodsFifteen chronic stroke patients with a mean age of (47.60±14.66) years were recruited from March 2017 to June 2018. At baseline, motor imagery ability was assessed first. Then motor imagery based brain computer interface with wrist passive movement was given as an intervention. Both range of motion of paretic wrist and Barthel index was assessed before and after the intervention.ResultsAmong the 15 chronic stroke patients admitted in the study, 12 finished the whole therapy, and 3 failed to pass the initial assessment. After the therapy, the 12 participants who completed the whole sessions of the treatment and follow up had improved ability of control electroencephalogram, in whom 9 regained the ability to actively extend the affected wrist, and the other 3 failed to actively extend their wrist (the rate of active extending wrist was 75%). The activity of daily life of all the participants did not change significantly before and after intervention, and no discomfort was found after daily treatment.ConclusionIn chronic stroke patients with wrist extension impairment, motor imagery based brain computer interface with wrist passive movement training is feasible and effective.

    Release date:2019-09-06 03:51 Export PDF Favorites Scan
  • Parameter transfer learning based on shallow visual geometry group network and its application in motor imagery classification

    Transfer learning is provided with potential research value and application prospect in motor imagery electroencephalography (MI-EEG)-based brain-computer interface (BCI) rehabilitation system, and the source domain classification model and transfer strategy are the two important aspects that directly affect the performance and transfer efficiency of the target domain model. Therefore, we propose a parameter transfer learning method based on shallow visual geometry group network (PTL-sVGG). First, Pearson correlation coefficient is used to screen the subjects of the source domain, and the short-time Fourier transform is performed on the MI-EEG data of each selected subject to acquire the time-frequency spectrogram images (TFSI). Then, the architecture of VGG-16 is simplified and the block design is carried out, and the modified sVGG model is pre-trained with TFSI of source domain. Furthermore, a block-based frozen-fine-tuning transfer strategy is designed to quickly find and freeze the block with the greatest contribution to sVGG model, and the remaining blocks are fine-tuned by using TFSI of target subjects to obtain the target domain classification model. Extensive experiments are conducted based on public MI-EEG datasets, the average recognition rate and Kappa value of PTL-sVGG are 94.9% and 0.898, respectively. The results show that the subjects’ optimization is beneficial to improve the model performance in source domain, and the block-based transfer strategy can enhance the transfer efficiency, realizing the rapid and effective transfer of model parameters across subjects on the datasets with different number of channels. It is beneficial to reduce the calibration time of BCI system, which promote the application of BCI technology in rehabilitation engineering.

    Release date: Export PDF Favorites Scan
  • Motor imagery electroencephalogram classification based on sparse spatiotemporal decomposition and channel attention

    Motor imagery electroencephalogram (EEG) signals are non-stationary time series with a low signal-to-noise ratio. Therefore, the single-channel EEG analysis method is difficult to effectively describe the interaction characteristics between multi-channel signals. This paper proposed a deep learning network model based on the multi-channel attention mechanism. First, we performed time-frequency sparse decomposition on the pre-processed data, which enhanced the difference of time-frequency characteristics of EEG signals. Then we used the attention module to map the data in time and space so that the model could make full use of the data characteristics of different channels of EEG signals. Finally, the improved time-convolution network (TCN) was used for feature fusion and classification. The BCI competition IV-2a data set was used to verify the proposed algorithm. The experimental results showed that the proposed algorithm could effectively improve the classification accuracy of motor imagination EEG signals, which achieved an average accuracy of 83.03% for 9 subjects. Compared with the existing methods, the classification accuracy of EEG signals was improved. With the enhanced difference features between different motor imagery EEG data, the proposed method is important for the study of improving classifier performance.

    Release date: Export PDF Favorites Scan
  • Multi-task motor imagery electroencephalogram classification based on adaptive time-frequency common spatial pattern combined with convolutional neural network

    The effective classification of multi-task motor imagery electroencephalogram (EEG) is helpful to achieve accurate multi-dimensional human-computer interaction, and the high frequency domain specificity between subjects can improve the classification accuracy and robustness. Therefore, this paper proposed a multi-task EEG signal classification method based on adaptive time-frequency common spatial pattern (CSP) combined with convolutional neural network (CNN). The characteristics of subjects' personalized rhythm were extracted by adaptive spectrum awareness, and the spatial characteristics were calculated by using the one-versus-rest CSP, and then the composite time-domain characteristics were characterized to construct the spatial-temporal frequency multi-level fusion features. Finally, the CNN was used to perform high-precision and high-robust four-task classification. The algorithm in this paper was verified by the self-test dataset containing 10 subjects (33 ± 3 years old, inexperienced) and the dataset of the 4th 2018 Brain-Computer Interface Competition (BCI competition Ⅳ-2a). The average accuracy of the proposed algorithm for the four-task classification reached 93.96% and 84.04%, respectively. Compared with other advanced algorithms, the average classification accuracy of the proposed algorithm was significantly improved, and the accuracy range error between subjects was significantly reduced in the public dataset. The results show that the proposed algorithm has good performance in multi-task classification, and can effectively improve the classification accuracy and robustness.

    Release date: Export PDF Favorites Scan
  • Research on the feature representation of motor imagery electroencephalogram signal based on individual adaptation

    Aiming at the problem of low recognition accuracy of motor imagery electroencephalogram signal due to individual differences of subjects, an individual adaptive feature representation method of motor imagery electroencephalogram signal is proposed in this paper. Firstly, based on the individual differences and signal characteristics in different frequency bands, an adaptive channel selection method based on expansive relevant features with label F (ReliefF) was proposed. By extracting five time-frequency domain observation features of each frequency band signal, ReliefF algorithm was employed to evaluate the effectiveness of the frequency band signal in each channel, and then the corresponding signal channel was selected for each frequency band. Secondly, a feature representation method of common space pattern (CSP) based on fast correlation-based filter (FCBF) was proposed (CSP-FCBF). The features of electroencephalogram signal were extracted by CSP, and the best feature sets were obtained by using FCBF to optimize the features, so as to realize the effective state representation of motor imagery electroencephalogram signal. Finally, support vector machine (SVM) was adopted as a classifier to realize identification. Experimental results show that the proposed method in this research can effectively represent the states of motor imagery electroencephalogram signal, with an average identification accuracy of (83.0±5.5)% for four types of states, which is 6.6% higher than the traditional CSP feature representation method. The research results obtained in the feature representation of motor imagery electroencephalogram signal lay the foundation for the realization of adaptive electroencephalogram signal decoding and its application.

    Release date: Export PDF Favorites Scan
  • Multi-scale feature extraction and classification of motor imagery electroencephalography based on time series data enhancement

    The brain-computer interface (BCI) based on motor imagery electroencephalography (MI-EEG) enables direct information interaction between the human brain and external devices. In this paper, a multi-scale EEG feature extraction convolutional neural network model based on time series data enhancement is proposed for decoding MI-EEG signals. First, an EEG signals augmentation method was proposed that could increase the information content of training samples without changing the length of the time series, while retaining its original features completely. Then, multiple holistic and detailed features of the EEG data were adaptively extracted by multi-scale convolution module, and the features were fused and filtered by parallel residual module and channel attention. Finally, classification results were output by a fully connected network. The application experimental results on the BCI Competition IV 2a and 2b datasets showed that the proposed model achieved an average classification accuracy of 91.87% and 87.85% for the motor imagery task, respectively, which had high accuracy and strong robustness compared with existing baseline models. The proposed model does not require complex signals pre-processing operations and has the advantage of multi-scale feature extraction, which has high practical application value.

    Release date: Export PDF Favorites Scan
  • A study on the effects of transcranial direct current stimulation combined with motor imagery on brain function based on electroencephalogram and near infrared spectrum

    Motor imagery is often used in the fields of sports training and neurorehabilitation for its advantages of being highly targeted, easy to learn, and requiring no special equipment, and has become a major research paradigm in cognitive neuroscience. Transcranial direct current stimulation (tDCS), an emerging neuromodulation technique, modulates cortical excitability, which in turn affects functions such as locomotion. However, it is unclear whether tDCS has a positive effect on motor imagery task states. In this paper, 16 young healthy subjects were included, and the electroencephalogram (EEG) signals and near-infrared spectrum (NIRS) signals of the subjects were collected when they were performing motor imagery tasks before and after receiving tDCS, and the changes in multiscale sample entropy (MSE) and haemoglobin concentration were calculated and analyzed during the different tasks. The results found that MSE of task-related brain regions increased, oxygenated haemoglobin concentration increased, and total haemoglobin concentration rose after tDCS stimulation, indicating that tDCS increased the activation of task-related brain regions and had a positive effect on motor imagery. This study may provide some reference value for the clinical study of tDCS combined with motor imagery.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content