Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder. Due to the subtlety of symptoms in the early stages of AD, rapid and accurate clinical diagnosis is challenging, leading to a high rate of misdiagnosis. Current research on early diagnosis of AD has not sufficiently focused on tracking the progression of the disease over an extended period in subjects. To address this issue, this paper proposes an ensemble model for assisting early diagnosis of AD that combines structural magnetic resonance imaging (sMRI) data from two time points with clinical information. The model employs a three-dimensional convolutional neural network (3DCNN) and twin neural network modules to extract features from the sMRI data of subjects at two time points, while a multi-layer perceptron (MLP) is used to model the clinical information of the subjects. The objective is to extract AD-related features from the multi-modal data of the subjects as much as possible, thereby enhancing the diagnostic performance of the ensemble model. Experimental results show that based on this model, the classification accuracy rate is 89% for differentiating AD patients from normal controls (NC), 88% for differentiating mild cognitive impairment converting to AD (MCIc) from NC, and 69% for distinguishing non-converting mild cognitive impairment (MCInc) from MCIc, confirming the effectiveness and efficiency of the proposed method for early diagnosis of AD, as well as its potential to play a supportive role in the clinical diagnosis of early Alzheimer's disease.
Breast cancer is a malignancy caused by the abnormal proliferation of breast epithelial cells, predominantly affecting female patients, and it is commonly diagnosed using histopathological images. Currently, deep learning techniques have made significant breakthroughs in medical image processing, outperforming traditional detection methods in breast cancer pathology classification tasks. This paper first reviewed the advances in applying deep learning to breast pathology images, focusing on three key areas: multi-scale feature extraction, cellular feature analysis, and classification. Next, it summarized the advantages of multimodal data fusion methods for breast pathology images. Finally, the study discussed the challenges and future prospects of deep learning in breast cancer pathology image diagnosis, providing important guidance for advancing the use of deep learning in breast diagnosis.