west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Polyurethane" 7 results
  • PROGRESS AND PROSPECT OF SYNTHETIC BIODEGRADABLE POLYMERS FOR BONE REPAIR AND RECONSTRUCTION

    Objective To review the latest researches of synthetic biodegradable polymers for bone repair and reconstruction, to predict the progress of bone substitute materials and bone tissue engineering scaffolds in future. Methods The l iterature concerning synthetic biodegradable polymers as bone substitute materials or bone tissue engineering scaffolds was collected and discussed. Results Al i phatic polyester, polyanhydride, polyurethane and poly (amino acids) were the most extensively studied synthetic biodegradable polymers as bone substitutes and the scaffolds. Each polymer was of good biological safety and biocompatibil ity, and the degradation products were nontoxic to human body. The mechanical properties and degradation rate of the polymers could be adjusted by the type or number of the monomers anddifferent synthetic methods. Therefore, the polymers with suitable mechanical strength and degradation rate could be produced according to the different requirements for bone grafting. Prel iminary studies in vivo showed their favorable capacity for bone repair. Conclusion The synthetic biodegradable polymers, especially the copolymers, composite materials and those carrying bone growth factors are expected to be the most promising and ideal biomaterials for bone repair and reconstruction.

    Release date:2016-08-31 05:47 Export PDF Favorites Scan
  • TEST OF CAROTID ARTERY REPLACEMANT BY POLYURETHANE ARTIFICIAL VASCULAR GRAFT WITHRECOMBINANT FIBRINOLYTIC ENZYME FACTOR II-MODIFIED LUMINA IN DOGS

    To evaluate the implantation effect of artificial vascular grafts with recombinant fibrinolytic enzyme factor II (rF II)-immobil ized lumina in animal test. Methods Four mm internal diameter (ID) polyurethane (PU) artificial vascular grafts were prepared by di pping and leaching method. The micro-pore size and morphology of the graft walls were observed by SEM. The graft lumina were immobil ized with rF II. Twenty hybrid male dogs [weighing (20 ± 1) kg] were used for animal model of carotid artery defect and were randomly divided into 3 groups: rF II -immobil ized PU group, no rF II -immobil ized PU group and expanded polytetrafluoroethylene (ePTFE) group. The vascular grafts were implanted for repairing injured segments of carotid artery in dogs. The general health state of animals was recorded. At 30 days and 60 days,the patency rate of every group was calculated. At 60 days IDs were measured, cell prol iferation in neointima was inspected by l ight microscope, morphology on neointima was observed by SEM. Results The ID of the PU vascular grafts was (3.74 ± 0.06) mm, wall thickness was 0.4-0.6 mm, the wall density was 0.25 g/cm3, the porosity was 79.8%, racical compl iance was 8.57%/100 mmHg. In the wall, micropores were well distributed and opened-pores structure was observed. Pore size was (140 ± 41) μm in the outside layer, pore size was (100 ± 3) μm in the inside layer, thickness ratio of outside / inside layers was 2 ∶ 1, the pore size was (40 ± 16) μm on the lumina surface. After operation the wounds on neck healed, all the animals survived and had no compl ication. At 30 days and 60 days after implantation, the patency rate for rF II -immobil ized PU group were 100% and 66.7%, for no rF II -immobil ized PU group were 66.7% and 33.3%, and for ePTFE group were 67.7% and 0 respectively, but at 60 days there were thrombosis at anastamotic sites of some grafts occluded. Before operation the IDs for rF II-immobil ized PU group, no rF II -immobil ized PU group and ePTFE group were (3.74 ± 0.06), (3.74 ± 0.06) and (4.00 ± 0.03) mm, at 60 days after operation the IDs were (4.51 ± 0.05), (4.31 ± 0.24) and (4.43 ± 0.12) mm respectively, showing no statistically significant differences between 3 groups (P gt; 0.05). Histological inspection indicated that at 15 days a layer of plasma protein deposited on the lumina, at 30 days some cells adhered to the lumina, at 60 days neointima could be observed on the lumina. Thickness of the neointima became larger with implantation time. At 60 days neointima thickness at proximal end, middle site and distal end ofgraft were (560 ± 22), (78 ± 5) and (323 ± 31) μm respectively for rF II -immobil ized PU group. The results of SEM showed that neointima surface consisted of flat and long cells which long axes ranged with blood flow direction and was similar to lumina morphology of carotid artery of dog. Conclusion Immobil ization of rF II to lumina of grafts could enhance fibrinolytic activity and inhibited formation of thrombo-embol ia which led to an increase in patency rate after implantation.

    Release date:2016-09-01 09:14 Export PDF Favorites Scan
  • RECONSTRUCTION OF A CERVICAL ESOPHAGUS SEGMENT WITH AN ARTIFICIAL PROSTHESIS BY USE OF A POLYURETHANE STENT COVERED WITH COLLAGEN-CHITOSAN SPONGE IN DOGS

    OBJECTIVE: To repair esophageal defects with an artificial prosthesis composed of biodegradable materials and nonbiodegradable materials, which is gradually replaced by host tissue. METHODS: The artificial esophagus was a two-layer tube consisting of a chitosan-collagen sponge and an inner polyurethane stent with a diameter of 20 mm and a length of 50 mm. We used the artificial esophagus to replace 5 cm esophageal defects in group I (five dogs) and in group II (ten dogs), and nutritional support was given after operation. The inner polyurethane stent was removed after 2 weeks in group I and after 4 weeks in group II endoscopically and epithelization of the regenerated esophagus was observed by histologic examination and transmission electron microscope. RESULTS: In group I, the polyurethane stent was removed after 2 weeks, and partial regeneration of esophageal epithelial was observed; and constriction of the regenerated esophagus progressed and the dogs became unable to swallow after 4 weeks. In group II, the polyurethane stent was removed after 4 weeks, highly regenerated esophageal tissue successfully replaced the defect and complete epithelization of the regenerated esophagus was observed. After 12 weeks, complete regeneration of esophageal mucosa structures, including mucosal smooth muscle and mucosal glands and partial regeneration of esophageal muscle tissue were observed. CONCLUSION: Esophageal high-order structures can be regenerated and provided a temporary stent and support by polyurethane stent and an adequate three-dimensional structure for 4 weeks by collagen-chitosan sponge.

    Release date:2016-09-01 09:35 Export PDF Favorites Scan
  • PREPARATION AND BIOCOMPATIBILITY OF POLYURETHANE MICROSPHERES FOR BIOMEDICAL APPLICATIONS

    ObjectiveTo prepare polyurethane (PU) microspheres and evaluate its physicochemical properties and biocompatibility for biomedical applications in vitro. MethodsThe PU microspheres were prepared by self-emulsification procedure at the emulsification rates of 1 000, 2 000, 3 000, and 4 000 r/min. The molecular structure was tested by Fourier transform infrared spectrometer and the surface and interior morphology of PU microspheres were observed by scanning electron microscopy (SEM). PU microspheres prepared at best emulsification rate were selected for the subsequent experiment. The human umbilical vein endothelial cells (HUVECs) were cultured and seeded on the materials, then cell morphology and adhesion status were observed by calcein-acetoxymethylester/pyridine iodide (Calcein-AM/PI) staining. The cells were cultured in the H-DMEM containing 10%FBS with additional 1% phenol (group A), in the extracts of PU prepared according to GB/T 16886.12 standard (group B), and in H-DMEM containing 10%FBS (group C), respectively. Cell counting kit 8 (CCK-8) assay was used to detect the cell viability. The blood compatibility experiments were used to evaluate the blood compatibility, the PU extracts as experimental group, stroke-physiological saline solution as negative control group, and distilled water as positive control group. The hemolytic rate was calculated. ResultsThe SEM results of PU microspheres at the emulsification rate of 2 000 r/min showed better morphology and size. The microstructure of the PU was rough on the surface and porous inside. The Calcein-AM/PI staining showed that the HUVECs attached to the PU tightly and nearly all cells were stained by green. CCK-8 assays demonstrated that group B and group C presented a significantly higher cell proliferative activity than group A (P<0.05), indicating low cytotoxicity of the PU. The absorbance value was 0.864±0.002 in positive control group and was 0.015±0.001 in negative control group. The hemolysis rate of the PU extracts was 0.39%±0.07% (<5%), indicating no hemolysis. ConclusionThe PU microspheres are successfully prepared by self-emulsification. The scaffold can obviously promote cell attachments and proliferation and shows low cytotoxicity and favorable blood compatibility, so it might be an ideal filler for soft tissue.

    Release date: Export PDF Favorites Scan
  • FABRICATION AND BIOCOMPATIBILITY EVALUATION OF POLYURETHANE-ACELLULAR MATRIX COMPOSITE SCAFFOLD IN VITRO AND IN VIVO

    ObjectiveTo prepare a composite scaffold using bladder acellular matrix (BACM) and polyurethane (PU) for bladder repair and regeneration, and to evaluate its mechanical properties and biocompatibility. MethodsFresh bladder tissues were obtained from New Zealand rabbits and then treated with 1%SDS and 1%Triton X-100 to obtain BACM. The BACM was combined with PU to fabricate PU-BACM composite scaffold. The tensile strength and elongation at break of BACM and PU-BACM scaffolds were tested. Scaffolds and extracts of scaffolds were prepared to evaluate the biocompatibility. For cell-proliferation analysis, cell counting kit 8 method was used at 1, 3, 5, and 7 days after co-culture of human bladder smooth muscle cell (HBSMC) and scaffolds. The cell cycle was tested by flow cytometry after HBSMC co-cultured with extracts of scaffolds and DMEM culture medium (control group) for 24 hours. Finally, 12 New Zealand rabbits were used to establish the model of bladder repair and regeneration. Incision of 5 mm was made on the bladder, and PU-BACM scaffold was sutured with the incision. The rabbits were sacrificed at 10, 20, 40, and 60 days after surgery to observe the inflammatory cell infiltration, new tissues formation, and regeneration of epithelium by HE staining. ResultsThe tensile strength of BACM and PU-BACM composite scaffold was (5.78 ± 0.85) N and (11.88 ± 3.21) N, and elongation at break was 14.46%±3.21% and 23.14%±1.32% respectively, all showing significant diffeence (t=3.182, P=0.034;t=4.332, P=0.012). The cell-proliferation rates of controls, PU, BACM, and PU-BACM were 36.78%±1.21%, 30.49%±0.89%, 18.92%±0.84%, and 22.42%±1.55%, it was significantly higher in PU-BACM than BACM (P<0.05). In the bladder repair and regeneration experiment, inflammatory cell infiltration was observed at 10 days after operation, and reduced at 20 days after implantation. In the meanwhile, the degradation of scaffolds was observed in vivo. The regeneration of epithelium could be observed after 40 days of implantation. At 60 days after implantation, in situ bladder tissue formed. ConclusionPU-BACM composite scaffold has higher mechanical properties and better biocompatibility than BACM scaffold. PU-BACM composite scaffold will not lead to strong immune response, and new bladder tissue can form in the in vivo rabbit bladder repair experiment. These results can provide research basis and theoretical data for further study.

    Release date: Export PDF Favorites Scan
  • Mechanical study of polyurethane elastomer and Medpor as the material of artificial auricular scaffold

    ObjectiveBy comparing the mechanics of human auricular cartilage, polyurethane elastic material, and high density polyethylene material (Medpor), to produce theoretical proof on choosing optimal artificial auricular scaffold materials.MethodsThe experimental materials were divided into 3 groups with 6 samples in each: the auricular cartilage group (group A), the polyurethane elastic material group (group B), and the Medpor group (group C). With an Instron5967 mechanical testing machine, compression and tensile testing were performed to respectively measure values of compression parameters (including yield stress, yield load, elastic modulus, yield compressibility, compressibility within 2 MPa, and compression stress within 10% strain) and values of tensile parameters (including yield stress, yield load, elastic modulus, yield elongation, elongation within 2 MPa, tensile stress within 1% strain) for comparison.ResultsCompression testing: no obvious yield points were observed in the whole process in samples of group B, while obvious yield points were observed in samples of groups A and C. There was no significant difference between groups A and C with respect to yield stress and yield load (P>0.05); while the yield compressibility in group C was significantly lower than that in group A (P<0.05) and the elastic modulus in group C was significantly higher than that in group A (P<0.05). There was a significant difference with respect to compressibility within 2 MPa of materials among the 3 groups (P<0.05), the high, medium, and low values go to groups B, A, and C respectively. The compression stress within 10% strain in group C was significantly higher than that in groups A and B (P<0.05), and there was no significant difference between that in groups A and B (P>0.05). Tensile testing: the materials in group B had extremely high tensile strength. The yield stress in groups A and B was significantly higher than that in group C (P<0.05), and the elastic modulus and tensile stress within 1% strain were significantly lower than those in group C (P<0.05); but no significant difference was found between those in groups A and B (P>0.05). There was no significant difference with respect to yield load among the 3 groups (P>0.05); but there was significant difference with respect to yield elongation among the 3 groups (P<0.05), and the high, medium, and low values go to groups B, A, and C respectively. The elongation within 2 MPa in group B was significantly higher than that in groups A and C (P<0.05), and there was no significant difference between that in groups A and C (P>0.05).ConclusionCompared with the Medpor, the polyurethane elastic material is a more ideal artificial auricular scaffold material.

    Release date:2019-05-06 04:46 Export PDF Favorites Scan
  • Research progress of electrospinning polyurethane fiber in the field of biomedical tissue engineering

    Polyurethane materials have good biocompatibility, blood compatibility, mechanical properties, fatigue resistance and processability, and have always been highly valued as medical materials. Polyurethane fibers prepared by electrostatic spinning technology can better mimic the structure of natural extracellular matrices (ECMs), and seed cells can adhere and proliferate better to meet the requirements of tissue repair and reconstruction. The purpose of this review is to present the research progress of electrostatically spun polyurethane fibers in bone tissue engineering, skin tissue engineering, neural tissue engineering, vascular tissue engineering and cardiac tissue engineering, so that researchers can understand the practical applications of electrostatically spun polyurethane fibers in tissue engineering and regenerative medicine.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content