Wearable devices are used in the new design of the maternal health care system to detect electrocardiogram and oxygen saturation signal while smart terminals are used to achieve assessments and input maternal clinical information. All the results combined with biochemical analysis from hospital are uploaded to cloud server by mobile Internet. Machine learning algorithms are used for data mining of all information of subjects. This system can achieve the assessment and care of maternal physical health as well as mental health. Moreover, the system can send the results and health guidance to smart terminals.
In this paper, a deep learning method has been raised to build an automatic classification algorithm of severity of chronic obstructive pulmonary disease. Large sample clinical data as input feature were analyzed for their weights in classification. Through feature selection, model training, parameter optimization and model testing, a classification prediction model based on deep belief network was built to predict severity classification criteria raised by the Global Initiative for Chronic Obstructive Lung Disease (GOLD). We get accuracy over 90% in prediction for two different standardized versions of severity criteria raised in 2007 and 2011 respectively. Moreover, we also got the contribution ranking of different input features through analyzing the model coefficient matrix and confirmed that there was a certain degree of agreement between the more contributive input features and the clinical diagnostic knowledge. The validity of the deep belief network model was proved by this result. This study provides an effective solution for the application of deep learning method in automatic diagnostic decision making.
Liver cancer is a common type of malignant tumor in digestive system. At present, computed tomography (CT) plays an important role in the diagnosis and treatment of liver cancer. Segmentation of tumor lesions based on CT is thus critical in clinical diagnosis and treatment. Due to the limitations of manual segmentation, such as inefficiency and subjectivity, the automatic and accurate segmentation based on advanced computational techniques is becoming more and more popular. In this review, we summarize the research progress of automatic segmentation of liver cancer lesions based on CT scans. By comparing and analyzing the results of experiments, this review evaluate various methods objectively, so that researchers in related fields can better understand the current research progress of liver cancer segmentation based on CT scans.
Acute respiratory distress syndrome (ARDS) is a serious threat to human life and health disease, with acute onset and high mortality. The current diagnosis of the disease depends on blood gas analysis results, while calculating the oxygenation index. However, blood gas analysis is an invasive operation, and can’t continuously monitor the development of the disease. In response to the above problems, in this study, we proposed a new algorithm for identifying the severity of ARDS disease. Based on a variety of non-invasive physiological parameters of patients, combined with feature selection techniques, this paper sorts the importance of various physiological parameters. The cross-validation technique was used to evaluate the identification performance. The classification results of four supervised learning algorithms using neural network, logistic regression, AdaBoost and Bagging were compared under different feature subsets. The optimal feature subset and classification algorithm are comprehensively selected by the sensitivity, specificity, accuracy and area under curve (AUC) of different algorithms under different feature subsets. We use four supervised learning algorithms to distinguish the severity of ARDS (P/F ≤ 300). The performance of the algorithm is evaluated according to AUC. When AdaBoost uses 20 features, AUC = 0.832 1, the accuracy is 74.82%, and the optimal AUC is obtained. The performance of the algorithm is evaluated according to the number of features. When using 2 features, Bagging has AUC = 0.819 4 and the accuracy is 73.01%. Compared with traditional methods, this method has the advantage of continuously monitoring the development of patients with ARDS and providing medical staff with auxiliary diagnosis suggestions.
The human brain deteriorates as we age, and the rate and the trajectories of these changes significantly vary among brain regions and among individuals. Because neuroimaging data are potentially important indicators of individual's brain health, they are commonly used in brain age prediction. In this review, we summarize brain age prediction model from neuroimaging-based studies in the last ten years. The studies are categorized based on their image modalities and feature types. The results indicate that the prediction frameworks based on neuroimaging holds promise toward individualized brain age prediction. Finally, we addressed the challenges in brain age prediction and suggested some future research directions.
Radiotherapy is one of the main treatments for tumor with increasingly high request for technique precision and the equipment stability. Machine learning may bring radiotherapy simplicity, individualization and precision, and may improve the automatic level of planning and quality assurance. Based on the process of radiotherapy, this paper reviews the applications and researches on machine learning, with an emphasis on deep learning, and proposes the prospects in the following aspects: segmentation of normal tissue and tumor, planning, treatment delivery, quality assurance and prognosis prediction.
Artificial intelligence belongs to the field of computer science. In the past few decades, artificial intelligence has shown broad application prospects in the medical field. With the development of computer technology in recent years, doctors and computer scientists have just begun to discover its potential for clinical application, especially in the field of congenital heart disease. Artificial intelligence now has been successfully applied to the prediction, intelligent diagnosis, medical image segmentation and recognition, clinical decision support of congenital heart disease. This article reviews the application of artificial intelligence in congenital cardiology.
Cognitive impairment is one of the three primary symptoms of schizophrenic patients and shows important value in early detection and warning for high-risk individuals. To study the specifics of electroencephalogram (EEG) in patients with schizophrenia under the cognitive load, we collected EEG signals from 17 schizophrenic patients and 19 healthy controls, extracted signals of each band based on wavelet transform, calculated the characteristics of nonlinear dynamic and functional brain networks, and automatically classified the two groups of people by using a machine learning algorithm. Experimental results indicated that the correlation dimension and sample entropy showed significant differences in α, β, θ, and γ rhythm of the Fp1 and Fp2 electrodes between groups under the cognitive load. These results implied that the functional disruptions in the frontal lobe might be the important factors of cognitive impairments in schizophrenic patients. Further results of the automatic classification analysis indicated that the combination of nonlinear dynamics and functional brain network properties as the input characteristics of the classifier showed the best performance, with the accuracy of 76.77%, sensitivity of 72.09%, and specificity of 80.36%. The results of this study demonstrated that the combination of nonlinear dynamics and function brain network properties may be potential biomarkers for early screening and auxiliary diagnosis of schizophrenia.
The outbreak of pneumonia caused by novel coronavirus (COVID-19) at the end of 2019 was a major public health emergency in human history. In a short period of time, Chinese medical workers have experienced the gradual understanding, evidence accumulation and clinical practice of the unknown virus. So far, National Health Commission of the People’s Republic of China has issued seven trial versions of the “Guidelines for the Diagnosis and Treatment of COVID-19”. However, it is difficult for clinicians and laymen to quickly and accurately distinguish the similarities and differences among the different versions and locate the key points of the new version. This paper reports a computer-aided intelligent analysis method based on machine learning, which can automatically analyze the similarities and differences of different treatment plans, present the focus of the new version to doctors, reduce the difficulty in interpreting the “diagnosis and treatment plan” for the professional, and help the general public better understand the professional knowledge of medicine. Experimental results show that this method can achieve the topic prediction and matching of the new version of the program text through unsupervised learning of the previous versions of the program topic with an accuracy of 100%. It enables the computer interpretation of “diagnosis and treatment plan” automatically and intelligently.
ObjectiveTo establish a model for predicting microvascular invasion (MVI) of hepatocellular carcinoma based on magnetic resonance imaging (MRI) radiomics features.MethodsThe clinical and pathological datas of 190 patients with hepatocellular carcinoma who received surgical treatment in our hospital from September 2017 to May 2020 were prospectively collected. The patients were randomly divided into training group (n=158) and test group (n=32) with a ratio of 5∶1. Gadoxetate disodium (Gd-EOB-DTPA) -enhanced MR images of arterial phase and hepatobiliary phase were used to select radiomics features through the region of interest (ROI). The ROI included the tumor lesions and the area dilating to 2 cm from the margin of the tumor. Based on a machine learning algorithm logistic, a radiomics model for predicting MVI of hepatocellular carcinoma was established in the training group, and the model was evaluated in the test group.ResultsSeven radiomics features were obtained. The area under the receiver operating characteristic curve (AUC) of the training group and the test group were 0.830 [95%CI (0.669, 0.811)] and 0.734 [95%CI (0.600, 0.936)], respectively.ConclusionThe model based on MRI radiomics features seems to be a promising approach for predicting the microvascular invasion of hepatocellular carcinoma, which is of clinical significance for the management of hepatocellular carcinoma treatment.