west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "selection operator" 3 results
  • Analysis of epileptic seizure detection method based on improved genetic algorithm optimization back propagation neural network

    In order to improve the accuracy and efficiency of automatic seizure detection, the paper proposes a method based on improved genetic algorithm optimization back propagation (IGA-BP) neural network for epilepsy diagnosis, and uses the method to achieve detection of clinical epilepsy rapidly and effectively. Firstly, the method extracted the linear and nonlinear features of the epileptic electroencephalogram (EEG) signals and used a Gaussian mixture model (GMM) to perform cluster analysis on EEG features. Next, expectation maximization (EM) algorithm was used to estimate GMM parameters to calculate the optimal parameters for the selection operator of genetic algorithm (GA). The initial weights and thresholds of the BP neural network were obtained through using the improved genetic algorithm. Finally, the optimized BP neural network is used for the classification of the epileptic EEG signals to detect the epileptic seizure automatically. Compared with the traditional genetic algorithm optimization back propagation (GA-BP), the IGA-BP neural network can improve the population convergence rate and reduce the classification error. In the process of automatic detection of epilepsy, the method improves the detection accuracy in the automatic detection of epilepsy disorders and reduced inspection time. It has important application value in the clinical diagnosis and treatment of epilepsy.

    Release date:2019-02-18 03:16 Export PDF Favorites Scan
  • Brain functional network reconstruction based on compressed sensing and fast iterative shrinkage-thresholding algorithm

    The construction of brain functional network based on resting-state functional magnetic resonance imaging (fMRI) is an effective method to reveal the mechanism of human brain operation, but the common brain functional network generally contains a lot of noise, which leads to wrong analysis results. In this paper, the least absolute shrinkage and selection operator (LASSO) model in compressed sensing is used to reconstruct the brain functional network. This model uses the sparsity of L1-norm penalty term to avoid over fitting problem. Then, it is solved by the fast iterative shrinkage-thresholding algorithm (FISTA), which updates the variables through a shrinkage threshold operation in each iteration to converge to the global optimal solution. The experimental results show that compared with other methods, this method can improve the accuracy of noise reduction and reconstruction of brain functional network to more than 98%, effectively suppress the noise, and help to better explore the function of human brain in noisy environment.

    Release date:2020-12-14 05:08 Export PDF Favorites Scan
  • Keloid nomogram prediction model based on weighted gene co-expression network analysis and machine learning

    Keloids are benign skin tumors resulting from the excessive proliferation of connective tissue in wound skin. Precise prediction of keloid risk in trauma patients and timely early diagnosis are of paramount importance for in-depth keloid management and control of its progression. This study analyzed four keloid datasets in the high-throughput gene expression omnibus (GEO) database, identified diagnostic markers for keloids, and established a nomogram prediction model. Initially, 37 core protein-encoding genes were selected through weighted gene co-expression network analysis (WGCNA), differential expression analysis, and the centrality algorithm of the protein-protein interaction network. Subsequently, two machine learning algorithms including the least absolute shrinkage and selection operator (LASSO) and the support vector machine-recursive feature elimination (SVM-RFE) were used to further screen out four diagnostic markers with the highest predictive power for keloids, which included hepatocyte growth factor (HGF), syndecan-4 (SDC4), ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), and Rho family guanosine triphophatase 3 (RND3). Potential biological pathways involved were explored through gene set enrichment analysis (GSEA) of single-gene. Finally, univariate and multivariate logistic regression analyses of diagnostic markers were performed, and a nomogram prediction model was constructed. Internal and external validations revealed that the calibration curve of this model closely approximates the ideal curve, the decision curve is superior to other strategies, and the area under the receiver operating characteristic curve is higher than the control model (with optimal cutoff value of 0.588). This indicates that the model possesses high calibration, clinical benefit rate, and predictive power, and is promising to provide effective early means for clinical diagnosis.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content