1. |
Kang Q, Yang C. Oxidative stress and diabetic retinopathy: molecular mechanisms, pathogenetic role and therapeutic implications[J/OL]. Redox Biol, 2020, 37: 101799[2020-11-13]. https://pubmed.ncbi.nlm.nih.gov/33248932/. DOI: 10.1016/jredox.2020.101799.
|
2. |
|
3. |
|
4. |
Sachdeva MM. Retinal neurodegeneration in diabetes: an emerging concept in diabetic retinopathy[J/OL]. Curr Diab Rep, 2021, 21(12): 65[2021-12-13]. https://pubmed.ncbi.nlm.nih.gov/34902066/. DOI: 10.1007/s11892-021-01428-x.
|
5. |
|
6. |
Tan TE, Wong TY. Diabetic retinopathy: looking forward to 2030[J/OL]. Front Endocrinol (Lausanne), 2022, 13: 1077669[2023-01-09]. https://pubmed.ncbi.nlm.nih.gov/36699020/. DOI: 10.3389/.fendo.2022.1077669.
|
7. |
|
8. |
|
9. |
|
10. |
|
11. |
Zhou J, Chen B. Retinal cell damage in diabetic retinopathy[J/OL]. Cells, 2023, 12(9): 1342[2023-05-08]. https://pubmed.ncbi.nlm.nih.gov/37174742/. DOI: 10.3390/cells12091342.
|
12. |
|
13. |
|
14. |
|
15. |
Yang S, Zhang J, Chen L. The cells involved in the pathological process of diabetic retinopathy[J/OL]. Biomed Pharmacother, 2020, 132: 110818[2020-10-11]. https://pubmed.ncbi.nlm.nih.gov/33053509/. DOI: 10.1016/j.biopha.2020.110818.
|
16. |
|
17. |
|
18. |
|
19. |
|
20. |
|
21. |
|
22. |
|
23. |
|
24. |
Downs KP, Nguyen H, Dorfleutner A, et al. An overview of the non-canonical inflammasome[J/OL]. Mol Aspects Med, 2020, 76: 100924[2020-11-11]. https://pubmed.ncbi.nlm.nih.gov/33187725/. DOI: 10.1016/j.mam.2020.100924.
|
25. |
|
26. |
|
27. |
|
28. |
Bugger H, Pfeil K. Mitochondrial ROS in myocardial ischemia reperfusion and remodeling[J/OL]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(7): 165768[2020-03-12]. https://pubmed.ncbi.nlm.nih.gov/32173461/. DOI: 10.1016/j.bbadis.2020.165768.
|
29. |
Roy A, Kandettu A, Ray S, et al. Mitochondrial DNA replication and repair defects: clinical phenotypes and therapeutic interventions[J/OL]. Biochim Biophys Acta Bioenerg, 2022, 1863(5): 148554[2020-03-24]. https://pubmed.ncbi.nlm.nih.gov/35341749/. DOI: 10.1016/j.bbabio.2022.148554.
|
30. |
|
31. |
Rius-Pérez S, Torres-Cuevas I, Millán I, et al. PGC-1α, Inflammation, and oxidative stress: an integrative view in metabolism[J/OL]. Oxid Med Cell Longev, 2020, 2020: 1452696[2020-03-09]. https://pubmed.ncbi.nlm.nih.gov/32215168/. DOI: 10.1155/2020/1452696.
|
32. |
|
33. |
|
34. |
Melentev PA, Ryabova EV, Surina NV, et al. Loss of swiss cheese in neurons contributes to neurodegeneration with mitochondria abnormalities, reactive oxygen species acceleration and accumulation of lipid droplets in drosophila brain[J/OL]. Int J Mol Sci, 2021, 22(15): 8275[2021-07-31]. https://pubmed.ncbi.nlm.nih.gov/34361042/. DOI: 10.3390/ijms22158275.
|
35. |
|
36. |
Piano I, Novelli E, Della Santina L, et al. Involvement of autophagic pathway in the progression of retinal degeneration in a mouse model of diabetes[J/OL]. Front Cell Neurosci, 2016, 10: 42[2016-02-19]. https://pubmed.ncbi.nlm.nih.gov/26924963/. DOI: 10.3389/fncel.2016.00042.
|
37. |
|
38. |
Sahu B, Leon LM, Zhang W, et al. Oxidative stress resistance 1 gene therapy retards neurodegeneration in the Rd1 mutant mouse model of retinopathy[J/OL]. Invest Ophthalmol Vis Sci, 2021, 62(12): 8[2021-09-02]. https://pubmed.ncbi.nlm.nih.gov/34505865/. DOI: 10.1167/iovs.62.12.8.
|
39. |
|
40. |
Volkert MR, Crowley DJ. Preventing neurodegeneration by controlling oxidative stress: the role of OXR1[J/OL]. Front Neurosci, 2020, 14: 611904[2020-12-15]. https://pubmed.ncbi.nlm.nih.gov/33384581/. DOI: 10.3389/fnins.2020.611904.
|
41. |
Durand M, Kolpak A, Farrell T, et al. The OXR domain defines a conserved family of eukaryotic oxidation resistance proteins[J/OL]. BMC Cell Biol, 2007, 8: 13[2007-03-28]. https://pubmed.ncbi.nlm.nih.gov/17391516/. DOI: 10.1186/1471-2121-8-13.
|
42. |
Matos AL, Bruno DF, Ambrósio AF, et al. The benefits of flavonoids in diabetic retinopathy[J/OL]. Nutrients, 2020, 12(10): 3169[2020-10-16]. https://pubmed.ncbi.nlm.nih.gov/33081260/. DOI: 10.3390/nu12103169.
|
43. |
Pan L, Cho KS, Yi I, et al. Baicalein, baicalin, and wogonin: protective effects against ischemia-induced neurodegeneration in the brain and retina[J/OL]. Oxid Med Cell Longev, 2021, 2021: 8377362[2021-06-29]. https://pubmed.ncbi.nlm.nih.gov/34306315/. DOI: 10.1155/2021/8377362.
|
44. |
|
45. |
|
46. |
|
47. |
|
48. |
Ebrahim N, El-Halim HEA, Helal OK, et al. Effect of bone marrow mesenchymal stem cells-derived exosomes on diabetes-induced retinal injury: implication of Wnt/ b-catenin signaling pathway[J/OL]. Biomed Pharmacother, 2022, 154: 113554[2022-08-17]. https://pubmed.ncbi.nlm.nih.gov/35987163/. DOI: 10.1016/j.biopha.2022.113554.
|
49. |
|
50. |
|
51. |
|
52. |
Duh EJ, Sun JK, Stitt AW. Diabetic retinopathy: current understanding, mechanisms, and treatment strategies[J/OL]. JCI Insight, 2017, 2(14): e93751[2017-07-20]. https://pubmed.ncbi.nlm.nih.gov/28724805/. DOI: 10.1172/jci.insight.93751.
|
53. |
Amato R, Giannaccini M, Dal Monte M, et al. Association of the somatostatin analog octreotide with magnetic nanoparticles for intraocular delivery: a possible approach for the treatment of diabetic retinopathy[J/OL]. Front Bioeng Biotechnol, 2020, 8: 144[2020-02-25]. https://pubmed.ncbi.nlm.nih.gov/32158755/. DOI: 10.3389/fbioe.2020.00144.
|
54. |
Fang Y, Shi K, Lu H, et al. Mingmu xiaomeng tablets restore autophagy and alleviate diabetic retinopathy by inhibiting PI3K/Akt/mTOR signaling[J/OL]. Front Pharmacol, 2021, 12: 632040[2021-04-13]. https://pubmed.ncbi.nlm.nih.gov/33927618/. DOI: 10.3389/fphar.2021.632040.
|
55. |
Zeilbeck LF, Müller B, Knobloch V, et al. Differential angiogenic properties of lithium chloride in vitro and in vivo[J/OL]. PLoS One, 2014, 9(4): e95546[2014-04-21]. https://pubmed.ncbi.nlm.nih.gov/24751879/. DOI: 10.1371/journal.pone.0095546.
|
56. |
|