1. |
曹毛毛, 陈万青. GLOBOCAN 2020全球癌症统计数据解读. 中国医学前沿杂志 (电子版), 2021, 13(3): 63-69.
|
2. |
刘宗超, 李哲轩, 张阳, 等. 2020全球癌症统计报告解读. 肿瘤综合治疗电子杂志, 2021, 7(2): 1-13.
|
3. |
Wu G, Woodruff HC, Sanduleanu S, et al. Preoperative CT-based radiomics combined with intraoperative frozen section is predictive of invasive adenocarcinoma in pulmonary nodules: A multicenter study. Eur Radiol, 2020, 30(5): 2680-2691.
|
4. |
Mengoli MC, Longo FR, Fraggetta F, et al. The 2015 World Health Organization classification of lung tumors: New entities since the 2004 classification. Pathologica, 2018, 110(1): 39-67.
|
5. |
Inamura K. Clinicopathological characteristics and mutations driving development of early lung adenocarcinoma: Tumor initiation and progression. Int J Mol Sci, 2018, 19(4): 1259.
|
6. |
杨欣, 林冬梅. 2015版WHO肺癌组织学分类变化及其临床意义. 中国肺癌杂志, 2016, 19(6): 332-336.
|
7. |
Zombori T, Nyári T, Tiszlavicz L, et al. The more the micropapillary pattern in stage Ⅰ lung adenocarcinoma, the worse the prognosis-a retrospective study on digitalized slides. Virchows Arch, 2018, 472(6): 949-958.
|
8. |
Shi Y, Wu S, Ma S, et al. Comparison between wedge resection and lobectomy/segmentectomy for early-stage non-small cell lung cancer: A Bayesian meta-analysis and systematic review. Ann Surg Oncol, 2022, 29(3): 1868-1879.
|
9. |
Gossot D, Mariolo AV, Lefevre M, et al. Strategies of lymph node dissection during sublobar resection for early-stage lung cancer. Front Surg, 2021, 8: 725005.
|
10. |
Sun W, Su H, Liu J, et al. Impact of histological components on selecting limited lymphadenectomy for lung adenocarcinoma≤2 cm. Lung Cancer, 2020, 150: 36-43.
|
11. |
Nitadori J, Bograd AJ, Kadota K, et al. Impact of micropapillary histologic subtype in selecting limited resection vs. lobectomy for lung adenocarcinoma of 2 cm or smaller. J Natl Cancer Inst, 2013, 105(16): 1212-1220.
|
12. |
Su H, Xie H, Dai C, et al. Procedure-specific prognostic impact of micropapillary subtype may guide resection strategy in small-sized lung adenocarcinomas: A multicenter study. Ther Adv Med Oncol, 2020, 12: 1758835920937893.
|
13. |
Hung JJ, Jeng WJ, Chou TY, et al. Prognostic value of the new International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society lung adenocarcinoma classification on death and recurrence in completely resected stageⅠlung adenocarcinoma. Ann Surg, 2013, 258(6): 1079-1086.
|
14. |
刘琳, 焦宗林, 曾媛, 等. 浸润性肺腺癌不同病理亚型的研究进展. 癌症进展, 2020, 18(5): 436-438, 466.
|
15. |
Zhao ZR, To KF, Mok TS, et al. Is there significance in identification of non-predominant micropapillary or solid components in early-stage lung adenocarcinoma? Interact Cardiovasc Thorac Surg, 2017, 24(1): 121-125.
|
16. |
何小群, 罗天友, 李琦, 等. 浸润性肺腺癌不同病理亚型的临床病理及CT特征分析. 第三军医大学学报, 2020, 42(19): 1950-1956.
|
17. |
Qian J, Zhao S, Zou Y, et al. Genomic underpinnings of tumor behavior in in situ and early lung adenocarcinoma. Am J Respir Crit Care Med, 2020, 201(6): 697-706.
|
18. |
Kawasaki K, Nojima S, Hijiki S, et al. FAM111B enhances proliferation of KRAS-driven lung adenocarcinoma by degrading p16. Cancer Sci, 2020, 111(7): 2635-2646.
|
19. |
Molina-Romero C, Rangel-Escareño C, Ortega-Gómez A, et al. Differential gene expression profiles according to the Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society histopathological classification in lung adenocarcinoma subtypes. Hum Pathol, 2017, 66: 188-199.
|
20. |
Gomez-Puerto MC, Iyengar PV, García de Vinuesa A, et al. Bone morphogenetic protein receptor signal transduction in human disease. J Pathol, 2019, 247(1): 9-20.
|
21. |
Deng T, Lin D, Zhang M, et al. Differential expression of bone morphogenetic protein 5 in human lung squamous cell carcinoma and adenocarcinoma. Acta Biochim Biophys Sin (Shanghai), 2015, 47(7): 557-563.
|
22. |
Zhou J, Liu B, Li Z, et al. Proteomic analyses identify differentially expressed proteins and pathways between low-risk and high-risk subtypes of early-stage lung adenocarcinoma and their prognostic impacts. Mol Cell Proteomics, 2021, 20: 100015.
|
23. |
Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci, 2017, 147: 1-73.
|
24. |
Yu Y, Ding Z, Jian H, et al. Prognostic value of MMP9 activity level in resected stageⅠB lung adenocarcinoma. Cancer Med, 2016, 5(9): 2323-2331.
|
25. |
Montagne F, Guisier F, Venissac N, et al. The role of surgery in lung cancer treatment: Present indications and future perspectives-state of the art. Cancers (Basel), 2021, 13(15): 3711.
|
26. |
Okada M. Radical sublobar resection for small-diameter lung cancers. Thorac Surg Clin, 2013, 23(3): 301-311.
|
27. |
Ettinger DS, Wood DE, Aisner DL, et al. Non-small cell lung cancer, version 5. 2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw, 2017, 15(4): 504-535.
|
28. |
Zeng W, Zhang W, Zhang J, et al. Systematic review and meta-analysis of video-assisted thoracoscopic surgery segmentectomy versus lobectomy for stageⅠ non-small cell lung cancer. World J Surg Oncol, 2020, 18(1): 44.
|
29. |
Berg E, Madelaine L, Baste JM, et al. Interest of anatomical segmentectomy over lobectomy for lung cancer: A nationwide study. J Thorac Dis, 2021, 13(6): 3587-3596.
|
30. |
Kent MS, Mandrekar SJ, Landreneau R, et al. Impact of sublobar resection on pulmonary function: Long-term results from American College of Surgeons Oncology Group Z4032 (Alliance). Ann Thorac Surg, 2016, 102(1): 230-238.
|
31. |
Yoshida Y, Nitadori JI, Shinozaki-Ushiku A, et al. Micropapillary histological subtype in lung adenocarcinoma of 2 cm or less: Impact on recurrence and clinical predictors. Gen Thorac Cardiovasc Surg, 2017, 65(5): 273-279.
|
32. |
Yeh YC, Nitadori J, Kadota K, et al. Using frozen section to identify histological patterns in stageⅠ lung adenocarcinoma of ≤3 cm: Accuracy and interobserver agreement. Histopathology, 2015, 66(7): 922-938.
|
33. |
Trejo Bittar HE, Incharoen P, Althouse AD, et al. Accuracy of the IASLC/ATS/ERS histological subtyping of stageⅠlung adenocarcinoma on intraoperative frozen sections. Mod Pathol, 2015, 28(8): 1058-1063.
|
34. |
Romanov V, Brooks BD. Antibody printing technologies. Methods Mol Biol, 2021, 2237: 151-177.
|
35. |
刘嘉, 李冬, 王徐, 等. 蛋白质组学的研究进展. 现代医药卫生, 2019, 35(9): 1380-1384.
|
36. |
Shan Q, Lou X, Xiao T, et al. A cancer/testis antigen microarray to screen autoantibody biomarkers of non-small cell lung cancer. Cancer Lett, 2013, 328(1): 160-167.
|
37. |
邓安梅, 仲人前, 陈孙孝, 等. 用蛋白质芯片联合检测肺癌患者血清中的肿瘤标志物. 中国免疫学杂志, 2002, 18(10): 701-702.
|
38. |
Han MK, Oh YH, Kang J, et al. Protein profiling in human sera for identification of potential lung cancer biomarkers using antibody microarray. Proteomics, 2009, 9(24): 5544-5552.
|
39. |
Nagano K. Development and evaluation of antibody proteomics technology for rapid and comprehensive identification of potential biomarkers and therapeutic targets. Biol Pharm Bull, 2018, 41(5): 663-669.
|
40. |
Hirakawa H, Shibata K, Ohzono E. Use of a semi-dry dot-blot for rapid detection of lymph node metastasis. Clin Chim Acta, 2010, 411(15-16): 1149-1150.
|
41. |
Otsubo R, Oikawa M, Hirakawa H, et al. Novel diagnostic procedure for determining metastasis to sentinel lymph nodes in breast cancer using a semi-dry dot-blot method. Int J Cancer, 2014, 134(4): 905-912.
|
42. |
Tomoshige K, Tsuchiya T, Otsubo R, et al. Intraoperative diagnosis of lymph node metastasis in non-small-cell lung cancer by a semi-dry dot-blot method. Eur J Cardiothorac Surg, 2016, 49(2): 617-622.
|
43. |
Otsubo R, Hirakawa H, Oikawa M, et al. Validation of a novel diagnostic kit using the semidry dot-blot method to detect metastatic lymph nodes in breast cancer: Distinguishing macrometastases from nonmacrometastases. Clin Breast Cancer, 2018, 18(3): e345-e351.
|
44. |
Perez CJ, Bagga AK, Prova SS, et al. Review and perspectives on the applications of mass spectrometry imaging under ambient conditions. Rapid Commun Mass Spectrom, 2019, 33 Suppl 3: 27-53.
|
45. |
Zhang L, Zhu B, Zeng Y, et al. Clinical lipidomics in understanding of lung cancer: Opportunity and challenge. Cancer Lett, 2020, 470: 75-83.
|
46. |
Lu H, Zhang H, Wei Y, et al. Ambient mass spectrometry for the molecular diagnosis of lung cancer. Analyst, 2020, 145(2): 313-320.
|
47. |
Lee GK, Lee HS, Park YS, et al. Lipid MALDI profile classifies non-small cell lung cancers according to the histologic type. Lung Cancer, 2012, 76(2): 197-203.
|
48. |
徐建军, 陈立如, 魏益平, 等. 常压直接质谱技术在快速鉴别肺癌与癌旁组织中的应用. 广东医学, 2014, 35(8): 1179-1182.
|
49. |
Zhang J, Huang Y, Tang X, et al. Roles of lipid profiles in human non-small cell lung cancer. Technol Cancer Res Treat, 2021, 20: 15330338211041472.
|
50. |
董来东, 黄果. 基于CT影像的人工智能辅助诊断系统对4771例肺癌诊断价值的系统评价与Meta分析. 中国胸心血管外科临床杂志, 2021, 28(10): 1183-1191.
|
51. |
陶雪敏, 方瑞, 吴重重, 等. 深度学习模型对纯磨玻璃结节肺腺癌病理亚型的预测分析. 中国医学科学院学报, 2020, 42(4): 477-484.
|
52. |
Wang Y, Zhou L, Wang M, et al. Combination of generative adversarial network and convolutional neural network for automatic subcentimeter pulmonary adenocarcinoma classification. Quant Imaging Med Surg, 2020, 10(6): 1249-1264.
|
53. |
He B, Song Y, Wang L, et al. A machine learning-based prediction of the micropapillary/solid growth pattern in invasive lung adenocarcinoma with radiomics. Transl Lung Cancer Res, 2021, 10(2): 955-964.
|
54. |
余婷, 王鹏, 钱菁, 等. 数字图像分析在病理诊断中的应用综述. 解放军医学院学报, 2020, 41(5): 539-542.
|
55. |
Yu KH, Zhang C, Berry GJ, et al. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat Commun, 2016, 7: 12474.
|
56. |
Teramoto A, Tsukamoto T, Kiriyama Y, et al. Automated classification of lung cancer types from cytological images using deep convolutional neural networks. Biomed Res Int, 2017, 2017: 4067832.
|
57. |
Yu KH, Wang F, Berry GJ, et al. Classifying non-small cell lung cancer types and transcriptomic subtypes using convolutional neural networks. J Am Med Inform Assoc, 2020, 27(5): 757-769.
|
58. |
Wei JW, Tafe LJ, Linnik YA, et al. Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks. Sci Rep, 2019, 9(1): 3358.
|