1. |
吴秀文, 任建安. 中国腹腔感染诊治指南 (2019 版). 中国实用外科杂志, 2020, 40(1): 1-16.
|
2. |
任建安. 腹腔感染风险因素分析与对策. 中华消化外科杂志, 2017, 16(12): 1167-1171.
|
3. |
刘昌, 张靖垚. 腹腔感染诊治新理念: 共识与争议. 中国实用外科杂志, 2019, 39(6): 538-541.
|
4. |
Torres G, Paredes M, Hernández A, et al. Epidemiology and risk factors of patients with intra-abdominal postsurgical infection treated with tigecycline: a cohort study. Rev Esp Quimioter, 2017, 30(1): 28-33.
|
5. |
Smith RL, Bohl JK, McElearney ST, et al. Wound infection after elective colorectal resection. Ann Surg, 2004, 239(5): 599-605, 605-607.
|
6. |
Allegranzi B, Zayed B, Bischoff P, et al. New WHO recommendations on intraoperative and postoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet Infect Dis, 2016, 16(12): e288-e303.
|
7. |
袁锡裕, 李庆贤, 龚时文, 等. 结直肠癌术后并发腹腔感染患者的病原学特点、危险因素分析及对患者预后的影响. 现代生物医学进展, 2019, 19(20): 3929-3934.
|
8. |
贾磊, 陆锦琪, 马燮峰, 等. 结直肠癌术后腹腔感染发生的危险因素分析. 中华胃肠外科杂志, 2016, 19(4): 409-413.
|
9. |
Tang H, Lu W, Yang Z, et al. Risk factors and long-term outcome for postoperative intra-abdominal infection after hepatectomy for hepatocellular carcinoma. Medicine (Baltimore), 2017, 96(17): e6795.
|
10. |
Migita K, Takayama T, Matsumoto S, et al. Risk factors for surgical site infections after elective gastrectomy. J Gastrointest Surg, 2012, 16(6): 1107-1115.
|
11. |
Hirao M, Tsujinaka T, Imamura H, et al. Overweight is a risk factor for surgical site infection following distal gastrectomy for gastric cancer. Gastric Cancer, 2013, 16(2): 239-244.
|
12. |
Xiao H, Xiao Y, Quan H, et al. Intra-abdominal infection after radical gastrectomy for gastric cancer: incidence, pathogens, risk factors and outcomes. Int J Surg, 2017, 48: 195-200.
|
13. |
Tu RH, Huang CM, Lin JX, et al. A scoring system to predict the risk of organ/space surgical site infections after laparoscopic gastrectomy for gastric cancer based on a large-scale retrospective study. Surg Endosc, 2016, 30(7): 3026-3034.
|
14. |
权峰涛, 张涛, 杨维桢. 结直肠癌患者术后并发腹腔感染的危险因素分析及对策研究. 实用癌症杂志, 2018, 33(1): 89-92.
|
15. |
Tu RH, Lin JX, Desiderio J, et al. Does intra-abdominal infection after curative gastrectomy affect patients’ long-term prognosis? A multi-center study based on a large sample size. Surg Infect (Larchmt), 2019, 20(4): 271-277.
|
16. |
Cho J, Park I, Lee D, et al. Risk factors for postoperative intra-abdominal abscess after laparoscopic appendectomy: analysis for consecutive 1 817 experiences. Dig Surg, 2015, 32(5): 375-381.
|
17. |
马涛, 刘彤. 腹膜腔免疫特性与腹腔感染. 中华胃肠外科杂志, 2018, 21(12): 1347-1350.
|
18. |
Sartelli M, Abu-Zidan FM, Catena F, et al. Global validation of the WSES Sepsis Severity Score for patients with complicated intra-abdominal infections: a prospective multicentre study (WISS Study). World J Emerg Surg, 2015, 10: 61.
|
19. |
Venet F, Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat Rev Nephrol, 2018, 14(2): 121-137.
|
20. |
Iskander KN, Osuchowski MF, Stearns-Kurosawa DJ, et al. Sepsis: multiple abnormalities, heterogeneous responses, and evolving understanding. Physiol Rev, 2013, 93(3): 1247-1288.
|
21. |
Cao C, Yu M, Chai Y. Pathological alteration and therapeutic implications of sepsis-induced immune cell apoptosis. Cell Death Dis, 2019, 10(10): 782.
|
22. |
Wong HR, Freishtat RJ, Monaco M, et al. Leukocyte subset-derived genomewide expression profiles in pediatric septic shock. Pediatr Crit Care Med, 2010, 11(3): 349-355.
|
23. |
Ahmed NA, McGill S, Yee J, et al. Mechanisms for the diminished neutrophil exudation to secondary inflammatory sites in infected patients with a systemic inflammatory response (sepsis). Crit Care Med, 1999, 27(11): 2459-2468.
|
24. |
Jia SH, Parodo J, Charbonney E, et al. Activated neutrophils induce epithelial cell apoptosis through oxidant-dependent tyrosine dephosphorylation of caspase-8. Am J Pathol, 2014, 184(4): 1030-1040.
|
25. |
Wang JF, Li JB, Zhao YJ, et al. Up-regulation of programmed cell death 1 ligand 1 on neutrophils may be involved in sepsis-induced immunosuppression: an animal study and a prospective case-control study. Anesthesiology, 2015, 122(4): 852-863.
|
26. |
Godini R, Fallahi H, Ebrahimie E. Network analysis of inflammatory responses to sepsis by neutrophils and peripheral blood mononuclear cells. PLoS One, 2018, 13(8): e0201674.
|
27. |
Wu JF, Ma J, Chen J, et al. Changes of monocyte human leukocyte antigen-DR expression as a reliable predictor of mortality in severe sepsis. Crit Care, 2011, 15(5): R220.
|
28. |
Gouel-Chéron A, Allaouchiche B, Guignant C, et al. Early interleukin-6 and slope of monocyte human leukocyte antigen-DR: a powerful association to predict the development of sepsis after major trauma. PLoS One, 2012, 7(3): e33095.
|
29. |
Venet F, Lukaszewicz AC, Payen D, et al. Monitoring the immune response in sepsis: a rational approach to administration of immunoadjuvant therapies. Curr Opin Immunol, 2013, 25(4): 477-483.
|
30. |
Derive M, Bouazza Y, Alauzet C, et al. Myeloid-derived suppressor cells control microbial sepsis. Intensive Care Med, 2012, 38(6): 1040-1049.
|
31. |
Guérin E, Orabona M, Raquil MA, et al. Circulating immature granulocytes with T-cell killing functions predict sepsis deterioration. Crit Care Med, 2014, 42(9): 2007-2018.
|
32. |
Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol, 2008, 8(10): 776-787.
|
33. |
Gouel-Chéron A, Venet F, Allaouchiche B, et al. CD4+ T-lymphocyte alterations in trauma patients. Crit Care, 2012, 16(3): 432.
|
34. |
Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol, 2013, 13(12): 862-874.
|
35. |
van de Veerdonk FL, Mouktaroudi M, Ramakers BP, et al. Deficient Candida-specific T-helper 17 response during sepsis. J Infect Dis, 2012, 206(11): 1798-1802.
|
36. |
Monneret G, Venet F, Kullberg BJ, et al. ICU-acquired immunosuppression and the risk for secondary fungal infections. Med Mycol, 2011, 49 Suppl 1: S17-S23.
|
37. |
Kelly-Scumpia KM, Scumpia PO, Weinstein JS, et al. B cells enhance early innate immune responses during bacterial sepsis. J Exp Med, 2011, 208(8): 1673-1682.
|
38. |
Monserrat J, de Pablo R, Diaz-Martín D, et al. Early alterations of B cells in patients with septic shock. Crit Care, 2013, 17(3): R105.
|
39. |
Weber GF, Chousterman BG, He S, et al. Interleukin-3 amplifies acute inflammation and is a potential therapeutic target in sepsis. Science, 2015, 347(6227): 1260-1265.
|
40. |
Rimmelé T, Payen D, Cantaluppi V, et al. Immune cell phenotype and function in sepsis. Shock, 2016, 45(3): 282-291.
|
41. |
Zhang S, Huang W. Epidemiological study of community- and hospital-acquired intraabdominal infections. Chin J Traumatol, 2015, 18(2): 84-89.
|
42. |
杨添尹, 张曼. 258 例腹水培养阳性结果的细菌学分布及耐药性分析. 标记免疫分析与临床, 2019, 26(9): 1493-1497, 1523.
|
43. |
Yang Q, Wang H, Chen M, et al. Surveillance of antimicrobial susceptibility of aerobic and facultative Gram-negative bacilli isolated from patients with intra-abdominal infections in China: the 2002-2009 Study for Monitoring Antimicrobial Resistance Trends (SMART). Int J Antimicrob Agents, 2010, 36(6): 507-512.
|
44. |
Fan S, Wang J, Li Y, et al. Bacteriology and antimicrobial susceptibility of ESBLs producers from pus in patients with abdominal trauma associated intra-abdominal infections. Eur J Trauma Emerg Surg, 2017, 43(1): 65-71.
|
45. |
赵春江, 陈宏斌, 王辉, 等. 2013 年全国 13 所教学医院院内血流感染及院内获得性肺炎和院内获得性腹腔感染常见病原菌分布和耐药性研究. 中华医学杂志, 2015, 95(22): 1739-1746.
|
46. |
Hawser S, Hoban DJ, Badal RE, et al. Epidemiology and antimicrobial susceptibility of Gram-negative aerobic bacteria causing intra-abdominal infections during 2010-2011. J Chemother, 2015, 27(2): 67-73.
|
47. |
Takesue Y, Kusachi S, Mikamo H, et al. Antimicrobial susceptibility of common pathogens isolated from postoperative intra-abdominal infections in Japan. J Infect Chemother, 2018, 24(5): 330-340.
|
48. |
Mazuski JE, Tessier JM, May AK, et al. The surgical infection society revised guidelines on the management of intra-abdominal infection. Surg Infect (Larchmt), 2017, 18(1): 1-76.
|
49. |
Lalisang TJM, Usman N, Hendrawidjaya I, et al. Clinical practice guidelines in complicated intra-abdominal infection 2018: an indonesian perspective. Surg Infect (Larchmt), 2019, 20(1): 83-90.
|
50. |
Nguyen MP, Crotty MP, Daniel B, et al. An evaluation of guideline concordance in the management of intra-abdominal infections. Surg Infect (Larchmt), 2019, 20(8): 650-657.
|
51. |
Sartelli M, Viale P, Catena F, et al. 2013 WSES guidelines for management of intra-abdominal infections. World J Emerg Surg, 2013, 8(1): 3.
|
52. |
朱以鹏, 朱维铭. 腹腔感染控制感染源的技术难点与对策. 中国实用外科杂志, 2019, 39(6): 561-564.
|
53. |
Sartelli M, Chichom-Mefire A, Labricciosa FM, et al. The management of intra-abdominal infections from a global perspective: 2017 WSES guidelines for management of intra-abdominal infections. World J Emerg Surg, 2017, 12: 29.
|
54. |
Blot S, Antonelli M, Arvaniti K, et al. Epidemiology of intra-abdominal infection and sepsis in critically ill patients: “AbSeS”, a multinational observational cohort study and ESICM Trials Group Project. Intensive Care Med, 2019, 45(12): 1703-1717.
|
55. |
Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med, 2017, 45(3): 486-552.
|
56. |
Barlam TF, Cosgrove SE, Abbo LM, et al. Implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis, 2016, 62(10): e51-e77.
|
57. |
Sawyer RG, Claridge JA, Nathens AB, et al. Trial of short-course antimicrobial therapy for intraabdominal infection. N Engl J Med, 2015, 372(21): 1996-2005.
|
58. |
Montravers P, Tubach F, Lescot T, et al. Short-course antibiotic therapy for critically ill patients treated for postoperative intra-abdominal infection: the DURAPOP randomised clinical trial. Intensive Care Med, 2018, 44(3): 300-310.
|
59. |
Mathias B, Szpila BE, Moore FA, et al. A review of GM-CSF therapy in sepsis. Medicine (Baltimore), 2015, 94(50): e2044.
|
60. |
Cheng SC, Scicluna BP, Arts RJ, et al. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat Immunol, 2016, 17(4): 406-413.
|
61. |
Delano MJ, Ward PA. The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunol Rev, 2016, 274(1): 330-353.
|