Objective To establish an osteoporosis screening tool for Chinese40-years-old or above women. Methods The T-score was calculated based on the mean bone mineral density(BMD) of 20-39 years women. Considering the result of dualenergy X-ray absorptiometry(DXA) as the golden criteria, the Bayes discriminant analysis was employed to explore the function. Results The formula of the screening tool for Chinese 40-years-old or above women as following:osteoporosis screenig tool for Chinese(OSTC):Weight-2×age+50. OSTC≤0was classified into high risk, OSTCgt;0 was low risk. The hit rate of OSTC was 75.78%.The sensitivity is 76.8%. The specificity is 75.1%, Kappa value was 0.51(P=0.000).That means the consistency of diagnosis result between OSTC and DXA was relatively good. Conclusion OSTC is a simple tool. Just based on age and weight, it can evaluate the osteoporosis risk of Chinese 40-years-old or above women. But the effect of OSTC has not been proved by other datasetand should be tested further.
We investigated the effects and optimal treatment frequency of pulsed electromagnetic fields (PEMFs) on postmenopausal osteoporosis (PMO). A comparison was performed with the cyclical alendronate and a course of PEMFs in the treatment for postmenopausal osteoporosis on bone mineral density (BMD), pain intensity and balance function. There was no significant difference between the two groups on mean percentage changes from baseline of BMD within 24 weeks after random treatments (P≥0.05). However, at the ends of 48 weeks and 72 weeks, the BMD of the PEMFs group were significantly lower than that of the alendronate group (P<0.05). No significant difference was detected between the two groups with regard to treatment effects on Visual Analogue Scale score, the Timed Up & Go Test and Berg Balance Scale score. Compared with cyclical alendronate, a course of PEMFs was as effective as alendronate in treating PMO for at least 24weeks. So its optimal treatment frequency for PMO may be one course per six months.
The present research is to investigate the time effect of sinusoidal electromagnetic fields (SEMFs) at different exposure time on the biomechanical properties in rats, and to find a best time for improving biomechanical properties. Forty female SD rats were randomly divided into five groups, i.e. control group, 45 min SEMFs group, 90 min SEMFs group, 180 min SEMFs group, and 270 min SEMFs group. In addition to the control group, other groups were exposed to 50 Hz and 0.1 mT magnetic field every day for the corresponding time periods. After eight weeks, bone mineral density (BMD), bone biomechanics, bone tissue morphology, micro-CT and pathological examination were performed. The results showed that there was no abnormal pathological finding in the experimental groups. In the 90 min SEMFs group, BMD, femur maximum load, elastic modulus, yield strength, trabecular number (Tb.N), trabecular thickness (Tb.Th) and trabecular area (Tb.Ar) percentage were all significantly higher than those in the control group (P<0.01), and trabecular separation (Tb.Sp) was significantly lower than that of the control group (P<0.01). However, for other experimental groups, some indices showed statistical significance compared to the control group (P<0.05), but some did not (P>0.05). This study showed that under 50 Hz and 0.1 mT SEMFs, 90 min is the best time that can effectively increase bone mineral density, improve the bone tissue microstructure organization and the biomechanical properties.
Objective To analyze the correlation between the polymorphism on interleukin 6 (IL-6) gene promoter region-174 locus and adolescent idiopathic scoliosis (AIS), including the susceptibility, the bracing effectiveness, and the possible mechanism. Methods The 182 AIS patients and 210 healthy controls who met the inclusion criteria between January 2013 and January 2016 were collected as research objects. The genotype of IL-6 gene promoter region-174 locus, the serum IL-6, the bone mineral density (BMD) of femoral neck and vertebrae (L1–4), and the bone metabolism parameters, including bone alkaline phosphatase (BALP), bone gla protein (BGP), tartrate resistant acid phosphatase 5b (TRACP-5b), urine Ca, and urine Ca/Cr, were detected. All research objects were divided into the AIS group and the control group according to whether they had AIS, the GG, CG, CC groups according to their genotype, and progression-free group and progression group according to the therapeutic effectiveness of 1-year bracing treatment. Statistical analysis for the indexes were conducted respectively. Results There were significant differences in AIS history, BMD of femoral neck and lumbar vertebrae between the AIS group and control group (P<0.05). According to the therapeutic effecitveness of 1-year bracing treatment, 182 AIS patients were divided into progression-free group in 110 cases and progression group in 72 cases. The results of single factor analysis showed that there were significant differences in the genotype and allele distribution of IL-6 gene promoter region-174 locus, BMD of femoral neck and lumbar vertebrae, IL-6, TRACP-5b, urine Ca, and urine Ca/Cr between the progression-free group and progression group (P<0.05). The results of multivariable analysis showed that the BMD of lumbar vertebrae, TRACP-5b, and urine Ca were the influencing factors of bracing efficacy (P<0.05). According to the results of genotype detection, all research objects were divided into GG group in 264 cases, CG group in 104 cases, and CC group in 24 cases. The IL-6, TRACP-5b, urine Ca, and urine Ca/Cr of GG type carriers were higher and BMD of femoral neck and lumbar vertebrae were lower when compared with the CG and CC type carriers (P<0.05). The BMD of lumbar vertebrae of CG type carriers was lower than that of CC type carriers (P<0.05). Conclusion The polymorphism of IL-6 genepromoter region-174 locus wasn’t correlated with the AIS susceptibility, but it was correlated (not independently correlated) with the scoliosis progression under bracing treatment, and the risk for G-carried patients was higher. The mechanism may be that the polymorphism affected the IL-6 expression level and eventually affected the BMD of AIS patients through the bone metabolism.
ObjectiveTo investigate the femoral bone remodeling and long-term effectiveness of total hip arthroplasty (THA) with anatomic medullary locking (AML) prosthesis.MethodsThe clinical data of 24 cases (26 hips) who were treated with THA with AML prosthesis between November 1997 and January 2003 were retrospectively analyzed. There were 12 males and 12 females with an age of 32-69 years (mean, 53.7 years). There were 5 cases (5 hips) of avascular necrosis of the femoral head, 6 cases (7 hips) of secondary osteoarthritis of the hip dysplasia, 6 cases (6 hips) of femoral neck fracture, 2 cases (2 hips) of primary osteoarthritis, 3 cases (3 hips) of revision surgery, 1 case (2 hips) of ankylosing spondylitis, 1 case (1 hip) of femoral head fracture. The patients were followed up at immediate, 6 weeks, 3 months, 6 months, 1 year, and then every year after operation for imaging evaluation (X-ray film was taken immediately after operation to evaluate the femoral isthmus compression, Engh standard was used to evaluate the biological fixation of the femoral shaft prosthesis, and Brooker method was used to evaluate the occurrence of heterotopic ossification); bone reconstruction evaluation [reconstruction of prosthesis and bone interface (type of bone reaction, Gruen zone, incidence, and occurrence time were recorded), reconstruction of bone around prosthesis (proximal femur stress shielding bone absorption was evaluated according to Engh and Bobyn methods, and bone mineral density change rate was measured)]; clinical efficacy evaluation [Harris score for efficacy, visual analogue scale (VAS) score for thigh pain].ResultsAll patients were followed up 15 years and 2 months to 20 years and 4 months, with a median of 16 years and 6 months. At immediate after operation, 24 hips (92.3%) had good femoral isthums compression, 24 hips (92.3%) had good bone ingrowth. Heterotopic ossification occurred in 2 patients with degree 1, 2 patients with degree 2, and 1 patient with degree 3 at 3-6 months after operation. Hyperplastic bone reactions were more common in Gruen 2, 3, 4, 5, 6, 10, 11, and 12 zones, mainly occurring at 6-20 months after operation, with the incidence of 3.8%-69.2%, with the highest incidence of spot welding. All absorptive bone reactions were osteolysis, which was common in Gruen 1 and 7 zones, and mainly occurred at 8 years after operation, with an incidence of 42.3%. No clear line (area) or enlarged sign of medullary cavity was observed. Twenty-one hips (80.8%) had 1 degree stress shieding, and 5 hips (19.2%) had 2 degree stress shieding. It mainly occurred at 10-24 months after operation in Gruen 1 and 7 zones. Dual energy X-ray absorptiometry showed that bone mineral density mainly decreased in Gruen 1, 2, 6, and 7 zones, mainly increased in Gruen 3, 4, and 5 zones. Bone mineral density loss progressed slowly after 2 years of operation, and it was stable in 5-8 years, but decreased rapidly in 8-9 years, and stabilized after 10 years. The Harris score increased from 51.1±6.2 before operation to 88.3±5.1 at last follow-up (t=–21.774, P=0.000). Mild thigh pain occurred in only 2 cases (7.7%) with the VAS score of 2. No aseptic loosening or revision of femoral prosthesis occurred during the follow-up.ConclusionThe application of AML prosthesis in THA has a good bone remodeling and a good long-term effectiveness.
ObjectiveTo summarize research progress of change in bone mineral density (BMD) after knee arthroplasty and its diagnostic methods, influencing factors, and drug prevention and treatment.MethodsThe relevant literature at home and abroad was reviewed and summarized from research status of the advantages and disadvantages of BMD assessment methods, the trend of changes in BMD after knee arthroplasty and its influencing factors, and the differences in effectiveness of drugs.ResultsThe central BMD and mean BMD around the prosthesis decrease after knee arthroplasty, which is closely associated with body position, age, weight, daily activities, and the fixation methods, design, and material of prosthesis. Denosumab, bisphosphonates, and teriparatide et al. can decrease BMD loss after knee arthroplasty.ConclusionBMD after knee arthroplasty decreases, which is related to various factors, but the mechanism is unclear. At present, some inhibitors of bone resorption can decrease BMD loss after knee arthroplasty. However, its long-term efficacy remains to be further explored.