目的 利用局部一致性(ReHo)方法探测创伤后应激障碍(PTSD)患者在静息状态下是否存在着大脑功能异常。 方法 2010年5月-7月对18例未经治疗的地震PTSD患者和19例同样经历地震但未患PTSD的对照者进行了静息态功能磁共振成像(Rs-fMRI) 扫描。应用ReHo方法处理Rs-fMRI数据,得出PTSD患者的异常脑区,并将患者存在组间差异的脑区ReHo值与临床用PTSD诊断量表(CAPS)、汉密尔顿抑郁量表(HAMD)和汉密尔顿焦虑量表(HAMA)分别进行相关分析。 结果 ① PTSD组ReHo显著增加的脑区包括右侧颞下回、楔前叶、顶下叶、中扣带回,左侧枕中回以及左/右侧后扣带回;ReHo显著降低的脑区包括左侧海马和左/右侧腹侧前扣带回。② 异常脑区中后扣带回和右侧中扣带回ReHo与HAMD呈负相关(中扣带回r=?0.575,P=0.012;右侧后扣带回:r=?0.507,P=0.032),其余脑区ReHo与临床指标无明显相关性(P>0.05),左侧海马与CAPS的相关性相对其他脑区较大(r=?0.430,P=0.075)。 结论 PTSD患者在静息状态下即存在着局部脑功能活动的降低和增加,ReHo方法可能有助于研究PTSD患者静息状态脑活动。
Although a great number of studies have investigated the changes of resting-state functional connectivity (rsFC) in patients with mental disorders, such as depression and schizophrenia etc, little is known how stable the changes are, and whether temporal sad or happy mood can modulate the intrinsic rsFC. In our experiments, happy and sad video clips were used to induce temporally happy and sad mood states in 20 healthy young adults. We collected functional magnetic resonance imaging (fMRI) data while participants were watching happy or sad video clips, which were administrated in two consecutive days. Seed-based functional connectivity analyses were conducted using the anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC), and amygdala as seeds to investigate neural network related to executive function, attention, and emotion. We also investigated the association of the rsFC changes with emotional arousability level to understand individual differences. There is significantly stronger functional connectivity between the left DLPFC and posterior cingulate cortex (PCC) under sad mood than that under happy mood. The increased connectivity strength was positively correlated with subjects' emotional arousability. The increased positive correlation between the left DLPFC and PCC under sad relative to happy mood might reflect an increased processing of negative emotion-relevant stimuli. The easier one was induced by strong negative emotion (higher emotional arousability), the greater the left DLPFC-PCC connectivity was indicated, the greater the instability of the intrinsic rsFC was shown.
We investigated the baseline brain activity level in patients with major depressive disorder (MDD) by amplitude of low-frequency fluctuation (ALFF) based on resting-state functional MRI (fMRI). We examined 13 patients in the MDD group and 14 healthy volunteers in the control group by resting-state fMRI on GE Signa 3.0T. We calculated and compared the ALFF values of the two groups. In the MDD group, ALFF values in the right medial prefrontal were higher than those in control group, with statistically significant differences (P<0.001). ALFF values in the left parietal in the MDD group were lower than those in control group with statistically significant differences (P<0.001). This resting-state fMRI study suggested that the alteration brain activity in the right medial prefrontal and left parietal ALFF contributed to the understanding of the pathophysiological mechanism of MDD patients.
Post-traumatic stress disorder (PTSD) is a mental disorder causing great distress to individuals, families and even society, and there is not yet effective way of unified prevention and treatment up till now. Lots of neuroimaging techniques, however, such as the magnetic resonance imaging, are widely used to the study of the pathogenesis of PTSD with the development of medical imaging. Functional magnetic resonance imaging (fMRI) can be applied to detect the abnormalities not only of the brain morphology but also of the function of various cerebral areas and neural circuit, and plays an important role in studying the pathogenesis of psychiatric diseases. In this paper, we mainly review the task-related and resting-state functional magnetic resonance imaging studies of the PTSD, and finally suggest possible directions for future research.
Early diagnosis and accurate stage of liver fibrosis are important for conducting the clinic therapy and assessing the therapeutic outcome. Functional magnetic resonance imaging (fMRI), as a noninvasive and effective method, plays an important role in diagnosis and stage of liver fibrosis. This review focuses on the advances in fMRI evaluation of liver fibrosis.
This study sought to reveal the difference of brain functions at resting-state between subjects with sub-health and normal controls by using the functional magnetic resonance imaging (fMRI) technology. Resting-state fMRI scans were performed on 24 subjects of sub-health and on 24 healthy controls with gender, age and education matched with the sub-health persons. Compared to the healthy controls, the sub-health group showed significantly higher regional homogeneity (ReHo) in the left post-central gyrus and the right post-central gyrus. On the other hand, the sub-health group showed significantly lower ReHo in the left superior frontal gyrus, in the right anterior cingulated cortex and ventra anterior cingulate gyrus, in the left dorsolateral frontal gyrus, and in the right middle temporal gyrus. The Significant difference in ReHo suggests that thebsub-health persons have abnormalities in certain brain regions. It is proved that its specific action and meaning deserves further assessment.
Brain aging can affect the strength of functional connectivity between brain regions. In recent years, studies have shown that functional connectivity is fluctuant over time, and can reflect more physiological and pathological information. Therefore, in the study resting state functional magnetic resonance imaging (fMRI) data of 32 elderly subjects and 36 younger subjects were selected, and the sliding window technique was used to estimate dynamic functional connectivity network. Then, the dependency of fluctuating energy difference on frequency band was studied using wavelet packet analysis, conducting the linear regression with age at the same time. Results showed that the fluctuating energy in older group was significantly higher than that in the young group in low frequency, and it was significantly lower than that in the young people in high frequency. These results suggested that the dynamic functional connectivity between networks in the elderly exist slow wave phenomenon, which may be related to the decreased reaction rate of the elderly. This article provides new ideas and methods for the research about brain aging, and promotes a theoretical basis for further understanding of the physiological significance of brain dynamic functional connectivity.