west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Mechanical property" 5 results
  • Research Progress of Genipin Cross-linking in Tissue Engineering in the Field of Cardiothoracic Surgery

    Decellularized tissue engineering scaffolds appear to have the properties of similar structure and mechanical characteristics to native tissues,good biocompatibility,suitability for cell adhesion,growth and angiogenesis induction,and non-immunogenicity. Genipin has anti-inflammatory,antithrombotic and antioxidative features which can considerably suppress vascular and endothelial inflammatory activation,increase mechanical strength of biological scaffolds,inhibit inflammatory response and decrease degradation rate of biological scaffolds. By cross-linking with decellularized matrices,Genipin can further improve corresponding performance of tissue engineering matrices,which is very helpful to promote the application of tissue engineering into clinical practice of cardiothoracic surgery. This review focuses on recent research process and possible prospects of Genipin cross-linking in tissue engineering in the field of cardiothoracic surgery.

    Release date:2016-08-30 05:47 Export PDF Favorites Scan
  • MECHANICAL PROPERTIES OF POLYLACTIC ACID/β-TRICALCIUM PHOSPHATE COMPOSITE SCAFFOLD WITH DOUBLE CHANNELS BASED ON THREE-DIMENSIONAL PRINTING TECHNIQUE

    ObjectiveTo improve the poor mechanical strength of porous ceramic scaffold, an integrated method based on three-dimensional (3-D) printing technique is developed to incorporate the controlled double-channel porous structure into the polylactic acid/β-tricalcium phosphate (PLA/β-TCP) reinforced composite scaffolds (double-channel composite scaffold) to improve their tissue regeneration capability and the mechanical properties. MethodsThe designed double-channel structure inside the ceramic scaffold consisted of both primary and secondary micropipes, which parallel but un-connected. The set of primary channels was used for cell ingrowth, while the set of secondary channels was used for the PLA perfusion. Integration technology of 3-D printing technique and gel-casting was firstly used to fabricate the double-channel ceramic scaffolds. PLA/β-TCP composite scaffolds were obtained by the polymer gravity perfusion process to pour PLA solution into the double-channel ceramic scaffolds through the secondary channel set. Microscope, porosity, and mechanical experiments for the standard samples were used to evaluate the composite properties. The ceramic scaffold with only the primary channel (single-channel scaffold) was also prepared as a control. ResultsMorphology observation results showed that there was no PLA inside the primary channels of the double-channel composite scaffolds but a dense interface layer between PLA and β-TCP obviously formed on the inner wall of the secondary channels by the PLA penetration during the perfusion process. Finite element simulation found that the compressive strength of the double-channel composite scaffold was less than that of the single-channel scaffold; however, mechanical tests found that the maximum compressive strength of the double-channel composite scaffold[(21.25±1.15) MPa] was higher than that of the single-channel scaffold[(9.76±0.64) MPa]. ConclusionThe double-channel composite scaffolds fabricated by 3-D printing technique have controlled complex micropipes and can significantly enhance mechanical properties, which is a promising strategy to solve the contradiction of strength and high-porosity of the ceramic scaffolds for the bone tissue engineering application.

    Release date: Export PDF Favorites Scan
  • Mechanical and light-activated antibacterial properties of resin filled with Ag-TiO2 nanoparticles

    The poor mechanical property and vulnerability to bacterial infections are the main problems in clinic for dental restoration resins. Based on this problem, the purpose of this study is to synthesize silver-titanium dioxide (Ag-TiO2) nanoparticles with good photocatalytic properties, and add them to the composite resin to improve the mechanical properties and photocatalytic antibacterial capability of the resin. The microstructure and chemical composition of Ag-TiO2 nanoparticles and composite resins were characterized. The results indicated that Ag existed in both metallic and silver oxide state in the Ag-TiO2, and Ag-TiO2 nanoparticles were uniformly dispersed in the resins. The results of mechanical experiments suggested that the mechanical properties of the composite resin were significantly improved due to the incorporation of Ag-TiO2 nanoparticles. The antibacterial results indicated that the Ag-TiO2 nanoparticle-filled composite resins exhibited excellent antibacterial activities under 660 nm light irradiation for 10 min due to the photocatalysis, and the Ag-TiO2 nanoparticle-filled composite resins could also exhibit excellent antibacterial activities after contact with bacteria for 24 h without light irradiation because of the release of Ag ions. In summary, this study provides a new antibacterial idea for the field of dental composite resins.

    Release date: Export PDF Favorites Scan
  • Research status and development of biodegradable zinc alloy as orthopedics implant

    Znic (Zn) alloys with good cytocompatibility and suitable degradation rate have been a kind of biodegradable metal with great potential for clinical applications. This paper summarizes the biological role of degradable Zn alloy as bone implant materials, discusses the mechanical properties of different Zn alloys and their advantages and disadvantages as bone implant materials, and analyzes the influence of different processing strategies (such as alloying and additive manufacturing) on the mechanical properties of Zn alloys. This paper provides systematic design approaches for biodegradable Zn alloys as bone implant materials in terms of the material selection, product processing, structural topology optimization, and assesses their application prospects with a view to better serve the clinic.

    Release date: Export PDF Favorites Scan
  • Effects of freeze-drying bovine pericardium using a combination of polyethylene glycol and trehalose

    The freeze-drying is a technology that preserves biological samples in a dry state, which is beneficial for storage, transportation, and cost saving. In this study, the bovine pericardium was treated with a freeze-drying protectant composed of polyethylene glycol (PEG) and trehalose (Tre), and then freeze-dried. The results demonstrated that the mechanical properties of the pericardium treated with PEG + 10% w/v Tre were superior to those of the pericardium fixed with glutaraldehyde (GA). The wet state water content of the rehydrated pericardium, determined using the Karl Fischer method, was (74.81 ± 1.44)%, which was comparable to that of the GA-fixed pericardium. The dry state water content was significantly reduced to (8.64 ± 1.52)%, indicating effective dehydration during the freeze-drying process. Differential scanning calorimetry (DSC) testing revealed that the thermal shrinkage temperature of the pericardium was (84.96 ± 0.49) ℃, higher than that of the GA-fixed pericardium (83.14 ± 0.11) ℃, indicating greater thermal stability. Fourier transform infrared spectroscopy (FTIR) results showed no damage to the protein structure during freeze-drying. Hematoxylin and eosin (HE) staining demonstrated that the freeze-drying process reduced pore formation, prevented ice crystal growth, and resulted in a tighter arrangement of tissue fibers. The frozen-dried bovine pericardium was subjected to tests for cell viability and hemolysis rate. The results revealed a cell proliferation rate of (77.87 ± 0.49)%, corresponding to a toxicity grade of 1. Additionally, the hemolysis rate was (0.17 ± 0.02)%, which is below the standard of 5%. These findings indicated that the frozen-dried bovine pericardium exhibited satisfactory performance in terms of cytotoxicity and hemolysis, thus meeting the relevant standards. In summary, the performance of the bovine pericardium treated with PEG + 10% w/v Tre and subjected to freeze-drying could meet the required standards.

    Release date:2024-04-24 09:50 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content