west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "generative adversarial network" 5 results
  • Applications of generative adversarial networks in medical image processing

    In recent years, researchers have introduced various methods in many domains into medical image processing so that its effectiveness and efficiency can be improved to some extent. The applications of generative adversarial networks (GAN) in medical image processing are evolving very fast. In this paper, the state of the art in this area has been reviewed. Firstly, the basic concepts of the GAN were introduced. And then, from the perspectives of the medical image denoising, detection, segmentation, synthesis, reconstruction and classification, the applications of the GAN were summarized. Finally, prospects for further research in this area were presented.

    Release date:2019-02-18 02:31 Export PDF Favorites Scan
  • Cross-modal retrieval method for thyroid ultrasound image and text based on generative adversarial network

    Ultrasonic examination is a common method in thyroid examination, and the results are mainly composed of thyroid ultrasound images and text reports. Implementation of cross modal retrieval method of images and text reports can provide great convenience for doctors and patients, but currently there is no retrieval method to correlate thyroid ultrasound images with text reports. This paper proposes a cross-modal method based on the deep learning and improved cross-modal generative adversarial network: ①the weight sharing constraints between the fully connection layers used to construct the public representation space in the original network are changed to cosine similarity constraints, so that the network can better learn the common representation of different modal data; ②the fully connection layer is added before the cross-modal discriminator to merge the full connection layer of image and text in the original network with weight sharing. Semantic regularization is realized on the basis of inheriting the advantages of the original network weight sharing. The experimental results show that the mean average precision of cross modal retrieval method for thyroid ultrasound image and text report in this paper can reach 0.508, which is significantly higher than the traditional cross-modal method, providing a new method for cross-modal retrieval of thyroid ultrasound image and text report.

    Release date:2020-10-20 05:56 Export PDF Favorites Scan
  • Automatic three-dimensional segmentation of liver and tumors regions based on conditional generative adversarial networks

    The three-dimensional (3D) liver and tumor segmentation of liver computed tomography (CT) has very important clinical value for assisting doctors in diagnosis and prognosis. This paper proposes a tumor 3D conditional generation confrontation segmentation network (T3scGAN) based on conditional generation confrontation network (cGAN), and at the same time, a coarse-to-fine 3D automatic segmentation framework is used to accurately segment liver and tumor area. This paper uses 130 cases in the 2017 Liver and Tumor Segmentation Challenge (LiTS) public data set to train, verify and test the T3scGAN model. Finally, the average Dice coefficients of the validation set and test set segmented in the 3D liver regions were 0.963 and 0.961, respectively, while the average Dice coefficients of the validation set and test set segmented in the 3D tumor regions were 0.819 and 0.796, respectively. Experimental results show that the proposed T3scGAN model can effectively segment the 3D liver and its tumor regions, so it can better assist doctors in the accurate diagnosis and treatment of liver cancer.

    Release date:2021-04-21 04:23 Export PDF Favorites Scan
  • Electrocardiogram data recognition algorithm based on variable scale fusion network model

    The judgment of the type of arrhythmia is the key to the prevention and diagnosis of early cardiovascular disease. Therefore, electrocardiogram (ECG) analysis has been widely used as an important basis for doctors to diagnose. However, due to the large differences in ECG signal morphology among different patients and the unbalanced distribution of categories, the existing automatic detection algorithms for arrhythmias have certain difficulties in the identification process. This paper designs a variable scale fusion network model for automatic recognition of heart rhythm types. In this study, a variable-scale fusion network model was proposed for automatic identification of heart rhythm types. The improved ECG generation network (EGAN) module was used to solve the imbalance of ECG data, and the ECG signal was reproduced in two dimensions in the form of gray recurrence plot (GRP) and spectrogram. Combined with the branching structure of the model, the automatic classification of variable-length heart beats was realized. The results of the study were verified by the Massachusetts institute of technology and Beth Israel hospital (MIT-BIH) arrhythmia database, which distinguished eight heart rhythm types. The average accuracy rate reached 99.36%, and the sensitivity and specificity were 96.11% and 99.84%, respectively. In conclusion, it is expected that this method can be used for clinical auxiliary diagnosis and smart wearable devices in the future.

    Release date: Export PDF Favorites Scan
  • An image classification method for arrhythmias based on Gramian angular summation field and improved Inception-ResNet-v2

    Arrhythmia is a significant cardiovascular disease that poses a threat to human health, and its primary diagnosis relies on electrocardiogram (ECG). Implementing computer technology to achieve automatic classification of arrhythmia can effectively avoid human error, improve diagnostic efficiency, and reduce costs. However, most automatic arrhythmia classification algorithms focus on one-dimensional temporal signals, which lack robustness. Therefore, this study proposed an arrhythmia image classification method based on Gramian angular summation field (GASF) and an improved Inception-ResNet-v2 network. Firstly, the data was preprocessed using variational mode decomposition, and data augmentation was performed using a deep convolutional generative adversarial network. Then, GASF was used to transform one-dimensional ECG signals into two-dimensional images, and an improved Inception-ResNet-v2 network was utilized to implement the five arrhythmia classifications recommended by the AAMI (N, V, S, F, and Q). The experimental results on the MIT-BIH Arrhythmia Database showed that the proposed method achieved an overall classification accuracy of 99.52% and 95.48% under the intra-patient and inter-patient paradigms, respectively. The arrhythmia classification performance of the improved Inception-ResNet-v2 network in this study outperforms other methods, providing a new approach for deep learning-based automatic arrhythmia classification.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content